|
|||
Full-Wave Rectifier Figure 10-202 illustrates a more common use of the diode as a rectifier. This type of a rectifier is called a full-wave bridge rectifier. The term “full-wave" indicates that the output is a continuous sequence of pulses rather than having gaps that appear in the halfwave rectifier. Illustration C shows the initial condition, during which, a positive portion of the input signal is applied to the network. Note the polarities across the diodes. Diodes D2 and D4 are reverse biased and can be replaced with an open circuit. Diodes D1 and D3 are forward biased and act as an open circuit. The current path through the diodes is clear to see, and the resulting waveform is developed across the load resistor. During the negative portion of the applied signal, the diodes will reverse their polarity and bias states. The result is a network shown in illustration D. Current now passes through diodes D4 and D2, which are forward biased, while diodes D1 and D3 are essentially open circuits due to being reverse biased. Note that during both alternations of the input waveform, the current will pass through the load resistor in the same direction. This results in the negative swing of the waveform being flipped up to the positive side of the time line. Dry Disk Dry disk rectifiers operate on the principle that electric current flows through a junction of two dissimilar conducting materials more readily in one direction than it does in the opposite direction. This is true because the resistance to current flow in one direction is low, while in the other direction it is high. Depending on the materials used, several amperes may flow in the direction of low resistance but only a few milliamperes in the direction of high resistance. Three types of dry disk rectifiers may be found in aircraft: the copper oxide rectifier, the selenium rectifier, and the magnesium copper-sulfide rectifier. The copper oxide rectifier consists of a copper disk upon which a layer of copper oxide has been formed by heating. [Figure 10-203] It may also consist of a chemical copper oxide preparation spread evenly over the copper surface. Metal plates, usually lead plates, are pressed against the two opposite faces of the disk to form a good contact. Current flow is from the copper to the copper oxide. The selenium rectifier consists of an iron disk, similar to a washer, with one side coated with selenium. Its operation is similar to that of the copper oxide rectifier. Current flows from the selenium to the iron. The magnesium copper-sulfide rectifier is made of washer-shaped magnesium disks coated with a layer of copper sulfide. The disks are arranged similarly to the other types. Current flows from the magnesium to the copper sulfide. |
©AvStop Online Magazine Contact Us Return To Books |