Position A

The loop starts in position A and is rotating clockwise. However, no lines of force are cut by the coil sides, which means that no emf is generated. The black brush is shown coming into contact with the black segment of the commutator, and the white brush is just coming into contact with the white segment.

Position B

In position B, the flux is now being cut at a maximum rate, which means that the induced emf is maximum. At this time, the black brush is contacting the black segment, and the white brush is contacting the white segment. The deflection of the meter is toward the right, indicating the polarity of the output voltage.

Position C

At position C, the loop has completed 180° of rotation. Like position A, no flux lines are being cut and the output voltage is zero. The important condition to observe at position C is the action of the segments and brushes. The black brush at the 180° angle is contacting both black and white segments on one side of the commutator, and the white brush is contacting both segments on the other side of the commutator. After the loop rotates slightly past the 180° point, the black brush is contacting only the white segment, and the white brush is contacting only the black segment.

Because of this switching of commutator elements, the black brush is always in contact with the coil side moving downward, and the white brush is always in contact with the coil side moving upward. Though the current actually reverses its direction in the loop in exactly the same way as in the AC generator, commutator action causes the current to flow always in the same direction through the external circuit or meter.

 
 
 ŠAvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator