Quenching Equipment

The quenching tank should be of the proper size to handle the material being quenched. Use circulating pumps and coolers to maintain approximately constant temperatures when doing a large amount of quenching. To avoid building up a high concentration of salt in the quenching tank, make provisions for adding fresh water to the quench tank used for molten salt baths.

Tank location in reference to the heat-treating furnace is very important. Situate the tank to permit rapid transfer of the part from the furnace to the quenching medium. A delay of more than a few seconds will, in many instances, prove detrimental to the effectiveness of the heat treatment. When heat treating material of thin section, employ guard sheets to retard the loss of heat during transfer to the quench tank. Provide a rinse tank to remove all salt from the material after quenching if the salt is not adequately removed in the quenching tank.

Heat Treatment of Ferrous Metals

The first important consideration in the heat treatment of a steel part is to know its chemical composition. This, in turn, determines its upper critical point. When the upper critical point is known, the next consideration is the rate of heating and cooling to be used. Carrying out these operations involves the use of uniform heating furnaces, proper temperature controls, and suitable quenching mediums.

Behavior of Steel During Heating and Cooling

Changing the internal structure of a ferrous metal is accomplished by heating to a temperature above its upper critical point, holding it at that temperature for a time sufficient to permit certain internal changes to occur, and then cooling to atmospheric temperature under redetermined, controlled conditions.

At ordinary temperatures, the carbon in steel exists in the form of particles of iron carbide scattered throughout an iron matrix known as “ferrite." The number, size, and distribution of these particles determine the hardness of the steel. At elevated temperatures, the carbon is dissolved in the iron matrix in the form of a solid solution called “austenite," and the carbide particles appear only after the steel has been cooled. If the cooling is slow, the carbide particles are relatively coarse and few. In this condition, the steel is soft. If the cooling is rapid, as by quenching in oil or water, the carbon precipitates as a cloud of very fine carbide particles, and the steel is hard. The fact that the carbide particles can be dissolved in austenite is the basis of the heat treatment of steel. The temperatures at which this transformation takes place are called the critical points and vary with the composition of the steel. The percentage of carbon in the steel has the greatest influence on the critical points of heat treatment.

 
 
 ©AvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator