Nickel-Cadmium Batteries

Chemistry and Construction

Active materials in nickel-cadmium cells (Ni-Cad) are nickel hydrate (NiOOH) in the charged positive plate (Anode) and sponge cadmium (Cd) in the charged negative plate (Cathode). The electrolyte is a potassium hydroxide (KOH) solution in concentration of 20 – 34 percent by weight pure KOH in distilled water.

Sintered nickel-cadmium cells have relatively thin sintered nickel matrices forming a plate grid structure. The grid structure is highly porous and is impregnated with the active positive material (nickel-hydroxide) and the negative material (cadmium-hydroxide). The plates are then formed by sintering nickel powder to fine-mesh wire screen. In other variations of the process the active material in the sintered matrix is converted chemically, or thermally, to an active state and then formed. In general, there are many steps to these cycles of impregnation and formation. Thin sintered plate cells are ideally suited for very high rate charge and discharge service. Pocket plate nickel-cadmium cells have the positive or negative active material, pressed into pockets of perforated nickel plated steel plates or into tubes. The active material is trapped securely in contact with a metal current collector so active material shedding is largely eliminated. Plate designs vary in thickness depending upon cycling service requirements. The typical open circuit cell voltage of a nickelcadmium battery is about 1.25 volts.

Operation of Nickel-Cadmium Cells

When a charging current is applied to a nickel-cadmium battery, the negative plates lose oxygen and begin forming metallic cadmium. The active material of the positive plates, nickel-hydroxide, becomes more highly oxidized. This process continues while the charging current is applied or until all the oxygen is removed from the negative plates and only cadmium remains.

Toward the end of the charging cycle, the cells emit gas. This will also occur if the cells are overcharged. This gas is caused by decomposition of the water in the electrolyte into hydrogen at the negative plates and oxygen at the positive plates. The voltage used during charging, as well as the temperature, determines when gassing will occur. To completely charge a nickel-cadmium battery, some gassing, however slight, must take place; thus, some water will be used.

The chemical action is reversed during discharge. The positive plates slowly give up oxygen, which is regained by the negative plates. This process results in the conversion of the chemical energy into electrical energy. During discharge, the plates absorb a quantity of the electrolyte. On recharge, the level of the electrolyte rises and, at full charge, the electrolyte will be at its highest level. Therefore, water should be added only when the battery is fully charged.

The nickel-cadmium battery is usually interchangeable with the lead-acid type. When replacing a lead-acid battery with a nickel-cadmium battery, the battery compartment must be clean, dry, and free of all traces of acid from the old battery. The compartment must be washed out and neutralized with ammonia or boric acid solution, allowed to dry thoroughly, and then painted with an alkali resisting varnish.

The pad in the battery sump jar should be saturated with a three percent (by weight) solution of boric acid and water before connecting the battery vent system.

 
 
 ©AvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator