The Speed of Sound

Sound, in reference to airplanes and their movement through the air, is nothing more than pressure disturbances in the air. As discussed earlier in this chapter, it is like dropping a rock in the water and watching the waves flow out from the center. As an airplane flies through the air, every point on the airplane that causes a disturbance creates sound energy in the form of pressure waves. These pressure waves flow away from the airplane at the speed of sound, which at standard day temperature of 59°F, is 761 mph. The speed of sound in air changes with temperature, increasing as temperature increases. Figure 3-75 shows how the speed of sound changes with altitude.

Subsonic, Transonic, and Supersonic Flight

When an airplane is flying at subsonic speed, all of the air flowing around the airplane is at a velocity of less than the speed of sound (known as Mach 1). Keep in mind that the air accelerates when it flows over certain parts of the airplane, like the top of the wing, so an airplane flying at 500 mph could have air over the top of the wing reach a speed of 600 mph. How fast an airplane can fly and still be considered in subsonic flight varies with the design of the wing, but as a Mach number, it will typically be just over Mach 0.8.

When an airplane is flying at transonic speed, part of the airplane is experiencing subsonic airflow and part is experiencing supersonic airflow. Over the top of the wing, probably about halfway back, the velocity of the air will reach Mach 1 and a shock wave will form. The shock wave forms 90 degrees to the airflow and is known as a normal shock wave. Stability problems can be encountered during transonic flight, because the shock wave can cause the airflow to separate from the wing. The shock wave also causes the center of lift to shift aft, causing the nose to pitch down. The speed at which the shock wave forms is known as the critical Mach number. Transonic speed is typically between Mach 0.80 and 1.20.

When an airplane is flying at supersonic speed, the entire airplane is experiencing supersonic airflow. At this speed, the shock wave which formed on top of the wing during transonic flight has moved all the way aft and has attached itself to the wing trailing edge. Supersonic speed is from Mach 1.20 to 5.0. If an airplane flies faster than Mach 5, it is said to be in hypersonic flight.

Shock Waves

Sound coming from an airplane is the result of the air being disturbed as the airplane moves through it, and the resulting pressure waves that radiate out from the source of the disturbance. For a slow moving airplane, the pressure waves travel out ahead of the airplane, traveling at the speed of sound. When the speed of the airplane reaches the speed of sound, however, the pressure waves (sound energy) cannot get away from the airplane. At this point the sound energy starts to pile up, initially on the top of the wing, and eventually attaching itself to the wing leading and trailing edges. This piling up of sound energy is called a shock wave. If the shock waves reach the ground, and cross the path of a person, they will be heard as a sonic boom. Figure 3-76A shows a wing in slow speed flight, with many

disturbances on the wing generating sound pressure waves that are radiating outward. View B is the wing of an airplane in supersonic flight, with the sound pressure waves piling up toward the wing leading edge.

Normal Shock Wave

When an airplane is in transonic flight, the shock wave that forms on top of the wing, and eventually on the bottom of the wing, is called a normal shock wave. If the leading edge of the wing is blunted, instead of being rounded or sharp, a normal shock wave will also form in front of the wing during supersonic flight. Normal shock waves form perpendicular to the airstream. The velocity of the air behind a normal shock wave is subsonic, and the static pressure and density of the air are higher. Figure 3-77 shows a normal shock wave forming on the top of a wing.

Oblique Shock Wave

An airplane that is designed to fly supersonic will have very sharp edged surfaces, in order to have the least amount of drag. When the airplane is in supersonic flight, the sharp leading edge and trailing edge of the wing will have shock waves attach to them. These shock waves are known as oblique shock waves. Behind an oblique shock wave the velocity of the air is lower, but still supersonic, and the static pressure and density are higher. Figure 3-78 shows an oblique

shock wave on the leading and trailing edges of a supersonic airfoil.

Expansion Wave

Earlier in the discussion of high-speed aerodynamics, it was stated that air at supersonic speed acts like a compressible fluid. For this reason, supersonic air, when given the opportunity, wants to expand outward. When supersonic air is flowing over the top of a wing, and the wing surface turns away from the direction of flow, the air will expand and follow the new direction. At the point where the direction of flow changes, an expansion wave will occur. Behind the expansion wave the velocity increases, and the static pressure and density decrease. An expansion wave is not a shock wave. Figure 3-78 shows an expansion wave on a supersonic airfoil.

 
 
 ŠAvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator