Chromic Acid Inhibitor

A 10 percent solution by weight of chromic acid, activated by a small amount of sulfuric acid, is particularly effective in treating exposed or corroded aluminum surfaces. It may also be used to treat corroded magnesium.

This treatment tends to restore the protective oxide coating on the metal surface. Such treatment must be followed by regular paint finishes as soon as practicable, and never later than the same day as the latest chromic acid treatment. Chromium trioxide flake is a powerful oxidizing agent and a fairly strong acid. It must be stored away from organic solvents and other combustibles. Either thoroughly rinse or dispose of wiping cloths used in chromic acid pickup.

Sodium Dichromate Solution

A less active chemical mixture for surface treatment of aluminum is a solution of sodium dichromate and chromic acid. Entrapped solutions of this mixture are less likely to corrode metal surfaces than chromic acid inhibitor solutions.

Chemical Surface Treatments

Several commercial, activated chromate acid mixtures are available under Specification MIL-C-5541 for field treatment of damaged or corroded aluminum surfaces. Take precautions to make sure that sponges or cloths used are thoroughly rinsed to avoid a possible fire hazard after drying.

Protective Paint Finishes

A good, intact paint finish is the most effective barrier between metal surfaces and corrosive media. The most common finishes include catalyzed polyurethane enamel, waterborne polyurethane enamel, and two-part epoxy paint. As new regulations regarding the emission of volatile organic compounds (VOCs) are put into effect, the use of waterborne paint systems have increased in popularity. Also still available are nitrate and butyrate dope finishes for fabric-covered aircraft. In addition, high visibility fluorescent materials may also be used, along with a variety of miscellaneous combinations of special materials. There may also be rain erosion resistant coatings on metal leadleading edges, and several different baked enamel finishes on engine cases and wheels.

Aircraft Cleaning

Cleaning an aircraft and keeping it clean are extremely important. From an aircraft maintenance technician’s viewpoint, it should be considered a regular part of aircraft maintenance. Keeping the aircraft clean can mean more accurate inspection results, and may even allow a flight crewmember to spot an impending component failure. A cracked landing gear fitting covered with mud and grease may be easily overlooked. Dirt can hide cracks in the skin. Dust and grit cause hinge fittings to wear excessively. If left on the aircraft’s outer surface, a film of dirt reduces flying speed and adds extra weight. Dirt or trash blowing or bouncing around the inside of the aircraft is annoying and dangerous. Small pieces of dirt blown into the eyes of the pilot at a critical moment can cause an accident. A coating of dirt and grease on moving parts makes a grinding compound that can cause excessive wear. Salt water has a serious corroding effect on exposed metal parts of the aircraft, and should be washed off immediately.

There are many different kinds of cleaning agents approved for use in cleaning aircraft. It is impractical to cover each of the various types of cleaning agents since their use varies under different conditions, such as the type of material to be removed, the aircraft finish, and whether the cleaning is internal or external.

In general, the types of cleaning agents used on aircraft are solvents, emulsion cleaners, soaps, and synthetic detergents. Their use must be in accordance with the applicable maintenance manual. The types of cleaning agents named above are also classed as light or heavy duty cleaners. The soap and synthetic detergent type cleaners are used for light duty cleaning, while the solvent and emulsion type cleaners are used for heavy duty cleaning. The light duty cleaners, which are nontoxic and nonflammable, should be used whenever possible. As mentioned previously, cleaners that can be effectively rinsed and neutralized must be used, or an alkaline cleaner may cause corrosion within the lap joints of riveted or spot-welded sheet metal components.

Exterior Cleaning

There are three methods of cleaning the aircraft exterior: (1) wet wash, (2) dry wash, and (3) polishing. Polishing can be further broken down into hand polishing and mechanical polishing. The type and extent of soiling and the final desired appearance determine the cleaning method to be used.

Wet wash removes oil, grease, or carbon deposits and most soils, with the exception of corrosion and oxide films. The cleaning compounds used are usually applied by spray or mop, after which high pressure running water is used as a rinse. Either alkaline or emulsion cleaners can be used in the wet wash method.

Dry wash is used to remove airport film, dust, and small accumulations of dirt and soil when the use of liquids is neither desirable nor practical. This method is not suitable for removing heavy deposits of carbon, grease, or oil, especially in the engine exhaust areas. Dry wash materials are applied with spray, mops, or cloths, and removed by dry mopping or wiping with clean, dry cloths.

Polishing restores the luster to painted and unpainted surfaces of the aircraft, and is usually performed after the surfaces have been cleaned. Polishing is also used to remove oxidation and corrosion. Polishing materials are available in various forms and degrees of abrasiveness. It is important that the aircraft manufacturer’s instructions be used in specific applications.

The washing of aircraft should be performed in the shade whenever possible as cleaning compounds tend to streak the surface if applied to hot metal, or are permitted to dry on the area. Install covers over all openings where water or cleaners might enter and cause damage. Pay particular attention to instrument system components such as pitot-static fittings and ports.

Various areas of aircraft, such as the sections housing radar and the area forward of the cockpit that are finished with a flat-finish paint, should not be cleaned more than necessary and should never be scrubbed with stiff brushes or coarse rags. A soft sponge or cheesecloth with a minimum of manual rubbing is advisable. Any oil or exhaust stains on the surface should first be removed with a solvent such as kerosene or other petroleum base solvent. Rinse the surfaces immediately after cleaning to prevent the compound from drying on the surface.

Before applying soap and water to plastic surfaces, flush the plastic surfaces with fresh water to dissolve salt deposits and wash away dust particles. Plastic surfaces should be washed with soap and water, preferably by hand.

Rinse with fresh water and dry with a chamois, synthetic wipes designed for use on plastic windshields, or absorbent cotton. In view of the soft surface, do not rub plastic with a dry cloth since this is not only likely to cause scratches, but it also builds up an electrostatic charge that attracts dust particles to the surface. The charge, as well as the dust, may be removed by patting or gently blotting with a clean, damp chamois. Do not use scouring powder or other material that can mar the plastic surface. Remove oil and grease by rubbing gently with a cloth wet with soap and water. Do not use acetone, benzene, carbon tetrachloride, lacquer thinners, window cleaning sprays, gasoline, fire extinguisher or deicer fluid on plastics because they soften the plastic and will cause crazing. Finish cleaning the plastic by coating with a plastic polish intended for aircraft windows and windshields. These polishes can minimize small surface scratches and will also help keep static charges from building up on the surface of the windows.

Surface oil, hydraulic fluid, grease, or fuel can be removed from aircraft tires by washing with a mild soap solution. After cleaning, lubricate all grease fittings, hinges, and so forth, where removal, contamination, or dilution of the grease is suspected during washing of the aircraft.

 ©AvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator