Stress Corrosion

Stress corrosion occurs as the result of the combined effect of sustained tensile stresses and a corrosive environment. Stress corrosion cracking is found in most metal systems; however, it is particularly characteristic of aluminum, copper, certain stainless steels, and high strength alloy steels (over 240,000 psi). It usually occurs along lines of cold working and may be transgranular or intergranular in nature. Aluminum alloy bellcranks with pressed in bushings, landing gear shock struts with pipe thread type grease fittings, clevis pin joints, shrink fits, and overstressed tubing B-nuts are examples of parts which are susceptible to stress corrosion cracking.

Fretting Corrosion

Fretting corrosion is a particularly damaging form of corrosive attack that occurs when two mating surfaces, normally at rest with respect to one another, are subject to slight relative motion. It is characterized by pitting of the surfaces and the generation of considerable quantities of finely divided debris. Since the restricted movements of the two surfaces prevent the debris from escaping very easily, an extremely localized abrasion occurs. [Figure 6-10] The presence of water vapor greatly increases this type of deterioration. If the contact areas are small and sharp, deep grooves resembling brinell markings or pressure indentations may be worn in the rubbing surface. As a result, this type of corrosion (on bearing surfaces) has also been called false brinelling.

 
 
 ŠAvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator