Lightning Strike

Although lightning strikes to aircraft are extremely rare, if a strike has occurred, the aircraft must be carefully inspected to determine the extent of any damage that might have occurred. When lightning strikes an aircraft, the electrical current must be conducted through the structure and be allowed to discharge or dissipate at controlled locations. These controlled locations are primarily the aircraft’s static discharge wicks, or on more sophisticated aircraft, null field dischargers. When surges of high voltage electricity pass through good electrical conductors, such as aluminum or steel, damage is likely to be minimal or nonexistent. When surges of high voltage electricity pass through non-metallic structures, such as a fiberglass radome, engine cowl or fairing, glass or plastic window, or a composite structure that does not have built-in electrical bonding, burning and more serious damage to the structure could occur. Visual inspection of the structure is required. Look for evidence of degradation, burning or erosion of the composite resin at all affected structures, electrical bonding straps, static discharge wicks and null field dischargers.

Fire Damage

Inspection of aircraft structures that have been subjected to fire or intense heat can be relatively simple if visible damage is present. Visible damage requires repair or replacement. If there is no visible damage, the structural integrity of an aircraft may still have been compromised. Since most structural metallic components of an aircraft have undergone some sort of heat treatment process during manufacture, an exposure to high heat not encountered during normal operations could severely degrade the design strength of the structure. The strength and airworthiness of an aluminum structure that passes a visual inspection but is still suspect can be further determined by use of a conductivity tester. This is a device that uses eddy current and is discussed later in this chapter. Since strength of metals is related to hardness, possible damage to steel structures might be determined by use of a hardness tester such as a Rockwell C hardness tester.

Flood Damage

Like aircraft damaged by fire, aircraft damaged by water can range from minor to severe, depending on the level of the flood water, whether it was fresh or salt water and the elapsed time between the flood occurrence and when repairs were initiated. Any parts that were totally submerged should be completely disassembled, thoroughly cleaned, dried and treated with a corrosion inhibitor. Many parts might have to be replaced, particularly interior carpeting, seats, side panels, and instruments. Since water serves as an electrolyte that promotes corrosion, all traces of water and salt must be removed before the aircraft can again be considered airworthy.


Because they operate in an environment that accelerates corrosion, seaplanes must be carefully inspected for corrosion and conditions that promote corrosion. Inspect bilge areas for waste hydraulic fluids, water, dirt, drill chips, and other debris. Additionally, since seaplanes often encounter excessive stress from the pounding of rough water at high speeds, inspect for loose rivets and other fasteners; stretched, bent or cracked skins; damage to the float attach fitting; and general wear and tear on the entire structure.

Aerial Application Aircraft

Two primary factors that make inspecting these aircraft different from other aircraft are the corrosive nature of some of the chemicals used and the typical flight profile. Damaging effects of corrosion may be detected in a much shorter period of time than normal use aircraft. Chemicals may soften the fabric or loosen the fabric tapes of fabric covered aircraft. Metal aircraft may need to have the paint stripped, cleaned, and repainted and corrosion treated annually. Leading edges of wings and other areas may require protective coatings or tapes. Hardware may require more frequent replacement.

During peak use, these aircraft may fly up to 50 cycles (takeoffs and landings) or more in a day, most likely from an unimproved or grass runway. This can greatly accelerate the failure of normal fatigue items. Landing gear and related items require frequent inspections. Because these aircraft operate almost continuously at very low altitudes, air filters tend to become obstructed more rapidly.

 ©AvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator