Heat treatment is a series of operations involving the heating and cooling of metals in the solid state. Its purpose is to change a mechanical property or combination of mechanical properties so that the metal will be more useful, serviceable, and safe for a definite purpose. By heat treating, a metal can be made harder, stronger, and more resistant to impact. Heat treating can also make a metal softer and more ductile. No one heat treating operation can produce all of these characteristics. In fact, some properties are often improved at the expense of others. In being hardened, for example, a metal may become brittle.

The various heat treating processes are similar in that they all involve the heating and cooling of metals. They differ, however, in the temperatures to which the metal is heated, the rate at which it is cooled, and, of course, in the final result.

The most common forms of heat treatment for ferrous metals are hardening, tempering, normalizing, annealing, and casehardening. Most nonferrous metals can be annealed and many of them can be hardened by heat treatment. However, there is only one nonferrous metal, titanium, that can be casehardened, and none can be tempered or normalized.

Internal Structure of Metals

The results obtained by heat treatment depend to a great extent on the structure of the metal and on the manner in which the structure changes when the metal is heated and cooled. A pure metal cannot be hardened by heat treatment because there is little change in its structure when heated. On the other hand, most alloys respond to heat treatment since their structures change with heating and cooling.

An alloy may be in the form of a solid solution, a mechanical mixture, or a combination of a solid solution and a mechanical mixture. When an alloy is in the form of a solid solution, the elements and compounds which form the alloy are absorbed, one into the other, in much the same way that salt is dissolved in a glass of water, and the constituents cannot be identified even under a microscope.

When two or more elements or compounds are mixed but can be identified by microscopic examination, a mechanical mixture is formed. A mechanical mixture can be compared to the mixture of sand and gravel in concrete. The sand and gravel are both visible. Just as the sand and gravel are held together and kept in place by the matrix of cement, the other constituents of an alloy are embedded in the matrix formed by the base metal.

An alloy in the form of a mechanical mixture at ordinary temperatures may change to a solid solution when heated. When cooled back to normal temperature, the alloy may return to its original structure. On the other hand, it may remain a solid solution or form a combination of a solid solution and mechanical mixture. An alloy which consists of a combination of solid solution and mechanical mixture at normal temperatures may change to a solid solution when heated. When cooled, the alloy may remain a solid solution, return to its original structure, or form a complex solution.