Chapter 3. Effective Communication

Confusion Between the Symbol and the Symbolized Object

Confusion between the symbol and the symbolized object results when a word is confused with what it is meant to represent. Although it is obvious that words and the connotations they carry can be different, people sometimes fail to make the distinction. An aviation maintenance technician (AMT) might be introduced as a mechanic. To many people, the term mechanic conjures up images of a person laboring over an automobile. Being referred to as an aircraft mechanic might be an improvement in some people’s minds, but neither really portrays the training and skill of the AMT. Words and symbols do not always represent the same thing to every person. To communicate effectively, speakers and writers should be aware of these differences. Words and symbols can then be chosen to represent what the speaker or writer intends.

Overuse of Abstractions

Abstractions are words that are general rather than specific. Concrete words or terms refer to objects people can relate directly to their own experiences. These words or terms specify an idea that can be perceived or a thing that can be visualized. Abstract words, on the other hand, stand for ideas that cannot be directly experienced, things that do not call forth mental images in the minds of the students. The word aircraft is an abstract word. It does not call to mind a specific aircraft in the imaginations of various students. One student may visualize an airplane, another student might visualize a helicopter, and still another student might visualize an airship. [Figure 3-4] Although the word airplane is more specific, various students might envision anything from a Boeing 777 to a Piper Cub.

Aircraft engines represent another example of abstractions. When an instructor refers to aircraft engines in general, some students might think of jet engines, while others would think of reciprocating engines. Even reciprocating engine is too abstract since it could be a radial engine, an inline engine, a V-type engine, or an opposed type engine. Use of the technical language of engines, as in Lycoming IO-360, would narrow the engine type, but would only be understood by students who have learned the terminology particular to aircraft engines.

Abstractions should be avoided in most cases, but there are times when abstractions are necessary and useful. Aerodynamics is applicable to all aircraft and is an example of an abstraction that can lead to understanding aircraft flight characteristics. The danger of abstractions is that they do not evoke the same specific items of experience in the minds of the students that the instructor intends. When such terms are used, they should be linked with specific experiences through examples and illustrations.

For instance, when an approach to landing is going badly, telling a student to take appropriate measures might not result in the desired action. It would be better to tell the student to conduct a go-around since this is an action that has the same meaning to both student and instructor. When maintenance students are being taught to torque the bolts on an engine, it would be better to tell them to torque the bolts in accordance with the maintenance manual for that engine rather than simply to torque the bolts to the proper values. Whenever possible, the level of abstraction should be reduced by using concrete, specific terms. This better defines and gains control of images produced in the minds of the students.

 ©AvStop Online Magazine                                                                                                                                                      Contact Us              Return To Books

AvStop Aviation News and Resource Online Magazine

Grab this Headline Animator