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BEA investigations are conducted in accordance with the provisions of Regulation No 
996/2010 of the European Parliament and of the Council of 20 October 2010 on the 
investigation and prevention of accidents and incidents in civil aviation. 

The BEA is the French Civil Aviation Safety Investigation Authority. Its investigations are 
conducted with the sole objective of improving aviation safety and are not intended 
to apportion blame or liability. BEA investigations are independent, separate and are 
conducted without prejudice to any judicial or administrative action that may be taken 
to determine blame or liability.

SPECIAL FOREWORD TO ENGLISH EDITION

This report has been translated and published by the BEA to make its reading 
easier for English-speaking people.  As accurate as the translation may be, the 
original text in French is the work or reference.

Safety Investigations
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Synopsis

On 31 May 2009, the Airbus A330 flight AF 447 took off from Rio de Janeiro Galeão 
airport bound for Paris Charles de Gaulle. The aeroplane was in contact with the 
Brazilian ATLANTICO control centre on the INTOL – SALPU – ORARO - TASIL route at 
FL350. At around 2 h 02, the Captain left the cockpit. At around 2 h 08, the crew made 
a course change of 12 degrees to the left, probably to avoid returns detected by the 
weather radar.

At 2 h 10 min 05, likely following the obstruction of the Pitot probes by ice crystals, 
the speed indications were incorrect and some automatic systems disconnected. The 
aeroplane’s flight path was not controlled by the two copilots. They were rejoined 1 
minute 30 later by the Captain, while the aeroplane was in a stall situation that lasted 
until the impact with the sea at 2 h 14 min 28.

The accident resulted from the following succession of events:

 � Temporary inconsistency between the measured airspeeds, likely following the 
obstruction of the Pitot probes by ice crystals that led in particular to autopilot 
disconnection and a reconfiguration to alternate law,

 � Inappropriate control inputs that destabilized the flight path, 
 � The crew not making the connection between the loss of indicated airspeeds and 

the appropriate procedure,
 � The PNF’s late identification of the deviation in the flight path and insufficient 

correction by the PF,
 � The crew not identifying the approach to stall, the lack of an immediate reaction 

on its part and exit from the flight envelope,
 � The crew’s failure to diagnose of the stall situation and, consequently, the lack of 

any actions that would have made recovery possible.

The BEA has addressed 41 Safety Recommendations to the DGAC, EASA, the FAA, 
ICAO and to the Brazilian and Senegalese authorities related to flight recorders, 
certification, training and recurrent training of pilots, relief of the Captain, SAR and 
ATC, flight simulators, cockpit ergonomics, operational feedback and oversight of 
operators by the national oversight authority.

f-cp090601en

Date of accident
1st June 2009 at 2 h 14 min 28(1)

Site of accident
At reference 3°03’57’’ N, 30°33’42’’ W, 
near the TASIL point, in international 
waters, Atlantic Ocean

Type of flight
International public transport of 
passengers
Scheduled flight AF 447

(1)All times in 
this report are 
UTC, except 
where otherwise 
specified. Two 
hours should be 
added to obtain 
the legal time 
applicable in 
metropolitan 
France on the 
day of the event, 
and three hours 
subtracted for Rio 
de Janeiro time.

Aircraft
Airbus A330-203
Registered F-GZCP

Owner and Operator
Air France

Operator
Air France

Persons on board
Flight crew: 3
Cabin crew: 9
Passengers: 216
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ORGANISATION OF THE INVESTIGATION

On Monday 1st June 2009 at around 7 h 45, the BEA was alerted by the Air France 
Operations Coordination Centre, that it had received no news from the Airbus 
A330-200, registered F-GZCP, undertaking flight AF  447 between Rio de Janeiro 
Galeão (Brazil) and Paris Charles de Gaulle. After having established without doubt 
that the aeroplane had disappeared over international waters, and in accordance 
with Annex 13 to the Convention on International Civil Aviation and to the French 
Civil Aviation Code (Book VII), the BEA, as Investigation Authority of the State of 
Registry of the aeroplane, instituted a safety investigation and a team was formed to 
conduct it. 

In accordance with the provisions of Annex 13, Brazilian, American, British, German 
and Senegalese accredited representatives were associated with the investigation 
as the State of the engine manufacturer (NTSB) and because they were able to 
supply essential information to the investigation (CENIPA, ANAC) or because they 
provided assistance in the sea search phases (AAIB, BFU). The following countries 
also nominated observers as some of their citizens were among the victims:

 � China,
 � Hungary,
 � Ireland,
 � Italy,
 � Korea,
 � Lebanon,
 � Morocco,
 � Norway,
 � Russia,
 � Switzerland.

On the evening of Monday 1st June, a team consisting of two BEA investigators left 
for Brazil.

The BEA Investigator-in-Charge initially set up four working groups to determine and 
gather the information required for the investigation in the following areas:

 � Sea searches,
 � Maintenance,
 � Operations,
 � Systems and equipment.

These working groups worked from 1st June onwards. Working group plenary sessions 
were held regularly in order to update investigation information.

After the publication of the two interim reports, on 2 July and 17 December 2009, the 
investigation focused essentially on the sea search operations:

 � Phase 3 took place from 2 to 25 April 2010 and from 3 to 24 May 2010. An area of 
6,300 km² was covered, without success. 

 � Phase 4 took place from 23 March to 12 April 2011. During this campaign, the 
wreckage of the Airbus A330 undertaking flight AF447 was located on 2 April, 
about 6.5 nautical miles north-east on the radial 019 from the last known position  
transmitted by the aeroplane. 



F-GZCP - 1st June 2009
20

 � Phase 5, to recover the flight recorders, began on 22 April 2011. The Flight Data 
Recorder (DFDR) module was found and brought to the surface on 1st May and the 
Cockpit Voice Recorder (CVR) on 2 May 2011. The two recorders were then shipped 
to Cayenne from 7 to 11 May by the French Navy patrol boat “La Capricieuse”. They 
were then flown on a scheduled flight to Paris, where they arrived on the morning 
of 12 May. Phase 5 continued work at the accident site with the recovery of the 
parts of the aeroplane that were useful to the investigation and the raising of 
104 bodies. Phase 5 ended on 16 June 2011 with the arrival of the victims’ bodies 
and the aeroplane parts in the port of Bayonne. The bodies were transferred to 
the Villejuif mortuary for identification. The aeroplane parts were handed over 
to the CEAT in Toulouse, with the other parts of the aeroplane, for examination.

At that time, the “Sea Searches” group had completed its work.

The recorder readout work began on 13 May 2011. All of the 1,300 parameters from 
the DFDR were available by 14 May and readout of the whole 2 hours of the CVR 
recording was performed on 15 May 2011.

After completion of the first analytical work on the recorders, the BEA published a 
note describing, in a factual manner, the series of events that led to the accident, and 
presented some new findings.

On 29 July 2011, a third Interim report was published. It presented all of the 
information available at that time. It also contained the first points from the analysis 
and some new findings. 

At this stage of the investigation, it was clear that it was necessary to understand 
the pilots’ behaviour more profoundly. It was thus decided to set up a new working 
group dedicated to Human Factors, the group being made up of pilots from EASA 
and the DGAC, a specialist in cognitive sciences, a doctor and BEA investigators. 

This working group worked in close liaison with the “Operations” and “Systems and 
Equipment” groups. Its work formed the basis of the new elements in the investigation 
that were included in the Draft Final Report, which was sent for consultation to the 
participants in the investigation, in accordance with the provisions of Annex 13 and 
the European Regulation on investigations and the prevention of aviation accidents 
and incidents, in force since October 2010.

Integration of the comments received led to the drafting, then the publication, of the 
Final Report of the Safety Investigation, on 5 July 2012. 
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1 - FACTUAL INFORMATION 

1.1 History of Flight

On Sunday 31 May 2009, the Airbus A330-203 registered F-GZCP operated by 
Air  France was programmed to perform scheduled flight AF 447 between Rio de 
Janeiro Galeão and Paris Charles de Gaulle. Twelve crew members (3 flight crew, 9 
cabin crew) and 216 passengers were on board. The departure was planned for 22 h 
00.

At around 22  h  10, the crew was cleared to start up engines and leave the stand. 
Takeoff took place at 22 h 29. The Captain was Pilot Not Flying (PNF); one of the 
copilots was Pilot Flying (PF).

At the start of the Cockpit Voice Recorder (CVR) recording, shortly after midnight, 
the aeroplane was in cruise at flight level 350. Autopilot 2 and auto-thrust were 
engaged. Auto fuel transfer in the “trim tank” was carried out during the climb. The 
flight was calm. 

At 1 h 35, the aeroplane arrived at INTOL point and the crew left the Recife frequency 
to change to HF communication with the Atlántico Oceanic control centre. A SELCAL 
test was successfully carried out, but attempts to establish an ADS-C connection with 
DAKAR Oceanic failed.

Shortly afterwards, the co-pilot modified the scale on his Navigation Display (ND) 
from 320 NM to 160 NM and noted “…a thing straight ahead”. The Captain confirmed 
and the crew again discussed the fact that the high temperature meant that they 
could not climb to flight level 370.

At 1 h 45, the aeroplane entered a slightly turbulent zone, just before SALPU point.

Note: At about 0 h 30 the crew had received information from the OCC about the presence of a 
convective zone linked to the inter-tropical convergence zone (ITCZ) between SALPU and TASIL.

The crew dimmed the lighting in the cockpit and switched on the lights “to see”. The 
co-pilot noted that they were “entering the cloud layer” and that it would have been 
good to be able to climb. A few minutes later, the turbulence increased slightly in 
strength.

Shortly after 1 h 52, the turbulence stopped. The co-pilot again drew the Captain’s 
attention to the REC MAX value, which had then reached flight level (FL) 375. A short 
time later, the Captain woke the second co-pilot and said “[…] he’s going to take my 
place”.

At around 2 h 00, after leaving his seat, the Captain attended the briefing between 
the two co-pilots, during which the PF (seated on the right) said specifically that “well 
the little bit of turbulence that you just saw we should find the same ahead we’re in the 
cloud layer unfortunately we can’t climb much for the moment because the temperature 
is falling more slowly than forecast” and that “the logon with DAKAR failed”. Then the 
Captain left the cockpit.

The aeroplane approached the ORARO point. It was flying at flight level 350 and at 
Mach 0.82. The pitch attitude was about 2.5 degrees. The weight and balance of the 
aeroplane were around 205 tonnes and 29%.
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The two copilots again discussed the temperature and the REC MAX. The turbulence 
increased slightly. At 2 h 06, the PF called the cabin crew, telling them that “in two 
minutes we ought to be in an area where it will start moving about a bit more than now 
you’ll have to watch out there” and he added “I’ll call you when we’re out of it”.

At around 2 h 08, the PNF proposed “go to the left a bit […]”. The HDG mode was 
activated and the selected heading decreased by about 12 degrees in relation to the 
route. The PNF changed the gain adjustment on his weather radar to maximum, after 
noticing that it was in calibrated mode. The crew decided to reduce the speed to 
about Mach 0.8 and engine de-icing was turned on.

At 2 h 10 min 05, the autopilot then the auto-thrust disconnected and the PF said 
“I have the controls”. The aeroplane began to roll to the right and the PF made 
a nose-up and left input. The stall warning triggered briefly twice in a row. The 
recorded parameters showed a sharp fall from about 275 kt to 60 kt in the speed 
displayed on the left primary flight display (PFD), then a few moments later in the 
speed displayed on the integrated standby instrument system (ISIS). The flight 
control law reconfigured from normal to alternate. The Flight Directors (FD) were 
not disconnected by the crew, but the crossbars disappeared.

Note: Only the speeds displayed on the left side and on the ISIS are recorded on the FDR; the 
speed displayed on the right side is not recorded.

At 2 h 10 min 16, the PNF said “we’ve lost the speeds ” then “alternate law protections”. 
The PF made rapid and high amplitude roll control inputs, more or less from stop to 
stop. He also made a nose-up input that increased the aeroplane’s pitch attitude up 
to 11° in ten seconds. 

Between 2 h 10 min 18 and 2 h 10 min 25, the PNF read out the ECAM messages in a 
disorganized manner. He mentioned the loss of autothrust and the reconfiguration 
to alternate law. The thrust lock function was de-activated. The PNF called out and 
turned on the wing anti-icing. 

The PNF said that the aeroplane was climbing and asked the PF several times to 
descend. The latter then made several nose-down inputs that resulted in a reduction 
in the pitch attitude and the vertical speed. The aeroplane was then at about 37,000 ft 
and continued to climb.

At about 2 h 10 min 36, the speed displayed on the left side became valid again and 
was then 223 kt; the ISIS speed was still erroneous. The aeroplane had lost about 
50 kt since the autopilot disconnection and the beginning of the climb. The speed 
displayed on the left side was incorrect for 29 seconds.

At 2 h 10 min 47, the thrust controls were pulled back slightly to 2/3 of the IDLE/
CLB notch (85% of N1). Two seconds later, the pitch attitude came back to a little 
above 6°, the roll was controlled and the angle of attack was slightly less than 5°. 

The aeroplane’s pitch attitude increased progressively beyond 10 degrees and the 
plane started to climb.

From 2 h 10 min 50, the PNF called the Captain several times. 

At 2  h  10  min  51, the stall warning triggered again, in a continuous manner. The 
thrust levers were positioned in the TO/GA detent and the PF made nose-up inputs. 
The recorded angle of attack, of around 6 degrees at the triggering of the stall 
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warning, continued to increase. The trimmable horizontal stabilizer (THS) began a 
nose-up movement and moved from 3 to 13 degrees pitch-up in about 1 minute and 
remained in the latter position until the end of the flight. Around fifteen seconds 
later, the ADR3 being selected on the right side PFD, the speed on the PF side became 
valid again at the same time as that displayed on the ISIS. It was then at 185kt and the 
three displayed airspeeds were consistent. The PF continued to make nose-up inputs. 
The aeroplane’s altitude reached its maximum of about 38,000 ft; its pitch attitude 
and angle of attack were 16 degrees.

At 2 h 11 min 37, the PNF said “controls to the left”, took over priority without any 
callout and continued to handle the aeroplane. The PF almost immediately took back 
priority without any callout and continued piloting.

At around 2 h 11 min 42, the Captain re-entered the cockpit. During the following 
seconds, all of the recorded speeds became invalid and the stall warning stopped, 
after having sounded continuously for 54 seconds. The altitude was then about 
35,000 ft, the angle of attack exceeded 40 degrees and the vertical speed was about 
-10,000 ft/min. The aeroplane’s pitch attitude did not exceed 15  degrees and the 
engines’ N1’s were close to 100%. The aeroplane was subject to roll oscillations to the 
right that sometimes reached 40 degrees. The PF made an input on the side-stick to 
the left stop and nose-up, which lasted about 30 seconds.

At 2 h 12 min 02, the PF said, “I have no more displays”, and the PNF “we have no 
valid indications”. At that moment, the thrust levers were in the IDLE detent and the 
engines’ N1’s were at 55%. Around fifteen seconds later, the PF made pitch-down 
inputs. In the following moments, the angle of attack decreased, the speeds became 
valid again and the stall warning triggered again.

Figure 1: History of Flight
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At 2  h  13  min 32, the PF said, “[we’re going to arrive] at level one hundred”. About 
fifteen seconds later, simultaneous inputs by both pilots on the side-sticks were 
recorded and the PF said, “go ahead you have the controls”.

The angle of attack, when it was valid, always remained above 35 degrees.

From 2 h 14 min 17, the Ground Proximity Warning System (GPWS) “sink rate” and 
then “pull up” warnings sounded. 

The recordings stopped at 2  h  14  min  28. The last recorded values were a vertical 
speed of -10,912 ft/min, a ground speed of 107 kt, pitch attitude of 16.2 degrees 
nose-up, roll angle of 5.3 degrees left and a magnetic heading of 270 degrees.

No emergency message was transmitted by the crew. The wreckage was found at a 
depth of 3,900 metres on 2 April 2011 at about 6.5 NM on the radial 019 from the last 
position transmitted by the aeroplane.

1.2 Killed and Injured

Injuries Crew Members Passengers Others

Fatal 12 216 -

Serious - - -

Light/none - - -

1.3 Damage to Aircraft

The aeroplane was destroyed.

1.4 Other Damage

Not applicable.

1.5 Personnel Information

Given the length of the planned flight and in compliance with the Air France 
operations manual and with the regulations in force, the flight crew was augmented 
by a copilot.

At the time of the event, the flight crew consisted of two copilots. The copilot in the 
right seat was the relief for the Captain (see § 1.17.2.3).

Note: The crew had left Paris on Thursday 28 May 2009 in the morning and arrived in 
Rio de Janeiro in the evening of the same day.

1.5.1 Flight crew

1.5.1.1 Captain

Male, aged 58 

 � Medical certificate (class 1) issued on 10 October 2008, valid until 31 October 2009
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 � Experience:

 y total: 10,988 flying hours, of which 6,258 as Captain
 y hours on type: 1,747 all as Captain
 y in the previous six months: 346 hours, 18 landings, 15 take-offs
 y in the previous three months: 168 hours, 8 landings, 6 take-offs
 y in the previous 30 days: 57 hours, 3 landings, 2 take-offs

The Captain had carried out sixteen rotations in the South America sector since he 
arrived in the A330/A340 division in 2007. His Oceanic route qualification was valid 
until 31 May 2010.

1.5.1.1.1 Aviation career details

 � Private Pilot’s License issued in 1974
 � Flight attendant from February 1976 to June 1982 (Air France)
 � Commercial Pilot’s License issued in 1977. Practical test taken on a Cessna 177 

after training at the training centre of the Technical Control and Training Service 
of the French civil aviation directorate (Direction Générale de l’Aviation Civile) in 
Grenoble. Instrument rating (IFR) issued in 1978 (on a PA30).  

 � Private flight instructor qualification obtained in 1979
 � 1st class professional pilot theory in 1979
 � Airline transport pilot theory in 1980
 � Mountain rating (altiport category) issued in 1981
 � 1st class professional Pilot’s License issued in 1982. Tests taken on a Nord 262 after 

training at the Technical Control and Training Service centre of the French civil 
aviation directorate (Direction Générale de l’Aviation Civile) in Saint-Yan

 � Demonstration pilot from January to March 1983 (Inter Avia Service Company)
 � Pilot from June 1983 to August 1984 for various companies
 � Several other type ratings obtained between 1977 and 1987:

 y C177 (1977), C310 (1977), C401 / C402 (1982), C421 (1983)
 y PA23 (1978), PA30 (1979), PA34 (1980), PA31 (1984)
 y BE65 (1981), BE 55/58 (1982), BE60 (1983), BE20 (1987), BE90 and BE10 (1987)
 y BN2A (1981)
 y N262 (1982)
 y MU2 (1983)

 � Independent pilot from October 1984 to February 1988
 � Joins Air Inter airline in February 1988 as copilot
 � Caravelle XII type rating in 1988
 � A300 type rating in 1990 (within Air Inter)
 � Airline pilot training course from 12 August 1991 to 15 January 1992 (within 

Air Inter)
 � ATPL License without limitations issued 19 February 1992
 � 1st class professional pilot instructor (IPP1) rating issued in 1993
 � A320 type rating issued on  13 March 1997 (within Air Inter). Line training 

completed and pilot in command for first time on 3 April 1997

Note: The merger between Air France and Air Inter took place on 1 April 1997
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 � Boeing 737-200 type rating (within Air France), end of line training and appointed 
Captain on 19 June 1998

 � New A320 type rating issued 29 May 2001 (within Air France)
 � Additional A330 type rating issued 27 October 2006 (within Air France). Unfit 

after line training test flight 17 January 2007, extended A330 line training and 
satisfactory test on 17 February 2007

 � Additional A340 type rating issued 9 August 2007 (within Air France). Line training 
completed and pilot in command for first time on 7 September 2007

 � Last medical certificate (class 1) issued on 10 October 2008, valid until 
31 October 2009

 � 2008/2009 and 2009/2010 ECP instruction seasons:
 y A330 (CEL33) line check on 15 February 2007
 y A340 (CEL34) line check on 7 September 2007
 y A330 (E33) training on 12 March 2008
 y A340 (CEL34) line check on 21 July 2008
 y 4S ground training on 7 August 2008 
 y A340 (E34) training on 11 October 2008
 y A330 (C33) base check on 12 October 2008
 y S1 ground training on 12 January 2009 
 y A330 (E33) training on 22 April 2009
 y A340 (C34) base check on 23 April 2009 

1.5.1.1.2 Training courses and specific training

 h Unreliable IAS

 � FFS session n°1 (Air Inter A320 type rating) on 24 February 1997 “vol avec IAS 
douteuse”. This session also included a “Study of high altitude flight (35,000 ft)” 
exercise

 � 2008-2009 instruction season E33 training on simulator. “IAS douteuse” exercise

Note: The A320 type rating programme at Air France in 2001 did not include a “vol avec IAS 
douteuse” exercise. 

 h Stall

 � A300 type rating (Air Inter): FFS session n°3 “level flight (FL 330) - stall”
 � A320  type rating (Air Inter): FFS session n°1 “study of stall and recovery of the 

trajectory
 � A320 type rating (Air France): FSS session n°7, exercise on “low speed demonstration 

in direct law and recuperation after a STALL alarm”. The stall procedure in force 
was that from December 1999

 h Unusual attitudes

 � Additional A330  type rating: computer assisted self-learning module “Unusual 
attitudes – Use of the rudder” completed on 28 September 2006

 h Piloting in alternate law

 � A320 type rating (Air France): FFS session n°4 “flying in alternate law and 
direct law”
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1.5.1.2 Co-pilot in left seat

Male, aged 37

 � Medical certificate (class 1) issued 11 December 2008, valid until 31 December 
2009 with compulsory wearing of corrective lenses.

 � Experience:

 y total: 6,547 flying hours 
 y on type: 4,479 flying hours
 y in the previous six months: 204 hours, 9 landings, 11 take-offs
 y in the previous three months: 99 hours, 6 landings, 5 take-offs
 y in the previous thirty days: 39 hours, 2 landings, 2 take-offs

 � May 2009 activity at the OCC: 

 y 12 May from 6 h to 16 h 
 y 13 May 16 h to 14 May 6 h 
 y 17 May from 6 h to 16 h 
 y 18 May 16 h to 19 May 6 h  
 y from 20 May 8 h to 22 May 17 h

Before the outward flight, his last landing on an A330 dated from 9 March 2009. He 
had flown the outward Paris-Rio flight as PF to gain the recent experience required 
to keep his dual A330/A340 rating up-to-date.

This pilot had performed 39 rotations on the South America sector since arriving in 
the A330/A340 division in 2002. His Oceanic route qualification was valid until 28 
February 2010.

1.5.1.2.1 Aviation career details

 � Basic license issued in 1992
 � Airline pilot theory in 1992
 � Professional Pilot’s License in 1993 (EPT ENAC)
 � Multi-engine instrument rating issued in 1993

Note: In the context of economic crisis in air transport, in autumn 1992 Air France stopped pilot 
training courses and drew up a waiting list in 1993.

 � Training as Air Traffic Control Engineer at ENAC until 1998. In August 1997, request 
to delay joining Air France in order to finish this training

 � Fit for starting type rating training at Air France in July 1998
 � Training in Multi Crew Co-ordination (MCC) in August 1998 by the Air France TRTO
 � A320 type rating issued in November 1998 (within Air France). End of LOFT and 

pilot in command for first time 14 February 1999
 � Air transport airline pilot’s license issued in April 2001
 � Additional A340 type rating in February 2002 (within Air France). End of line 

training and pilot in command for first time in April 2002
 � Additional A330 type rating and line training in October 2002
 � Assigned to Air Calédonie Internationale airline for two months in 2005 to carry 

out flights on A330 on the Tokyo – Nouméa route
 � Renewal of SEP rating on TB10 in Nouméa in 2005
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 � He was appointed (as) cadre at the Technical Flight Crew Division as representative 
of the Flight Deck Crew hub at the CCO from 1st May 2008

 � 2008/2009 and 2009/2010 ECP instruction seasons:

 y CEL34 line check 30 October 2007
 y E34 training 22 July 2008
 y C33 base check 23 July 2008
 y CEL33 line check 26 October 2008
 y E33 training 6 December 2008
 y 4S ground training 10 December 2008
 y C34 base flight check 21 December 2008
 y S1 ground training 18 March 2009

1.5.1.2.2 Training courses and specific training

 h Unreliable IAS

 � 2008-2009 instruction season E33 simulator training. “IAS douteuse” exercise

Note: The A320 type rating programme at Air France in 1998 did not include a “vol avec IAS 
douteuse” exercise.

 h Stall 

 � A320 type rating: FFS session n°4: “piloting in degraded law (effect of buffeting) 
in alternate law”

1.5.1.3 Copilot in right seat

Male, aged 32

 � Medical certificate (class 1) issued on 24 October 2008, valid until 31 October 
2009 with compulsory wearing of corrective lenses.

 � Experience:

 y total: 2,936 flying hours
 y on type: 807 flying hours
 y in the previous six months: 368 hours, 16 landings, 18 take-offs
 y in the previous three months: 191 hours, 7 landings, 8 take-offs
 y in the previous thirty days: 61 hours, 1 landing, 2 take-offs

This pilot had performed five rotations in the South America sector since arriving in 
the A330/A340 division in 2008, including one to Rio de Janeiro. His Oceanic route 
qualification was valid until 31 May 2010.

1.5.1.3.1 Aviation career details

 � Private Pilot’s License issued in 2000
 � ATPL theory in 2000
 � Professional pilot’s license issued in 2001
 � Multi-engine instrument type rating issued in 2001
 � Glider pilot’s license issued in 2001
 � Following his selection by Air France, pilot training course at the Amaury de la 

Grange flying school in Merville from October 2003
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 � A320 type rating issued in 2004 (within Air France). End of line training and pilot 
in command for first time in September 2004

 � ATPL License issued on 3 August 2007
 � Additional A340 type rating issued in February 2008 (with Air France). End of 

LOFT and pilot in command for first time in June 2008
 � Additional A330 type rating and line training in December 2008
 � 2008/2009 ECP instruction season:

 y 4S ground training on 15 January 2009
 y E33 training on 2 February 2009
 y C34 base flight check on 3 February 2009

Note: The validity of the E34, C33, CEL34, CEL33, S1 training courses, checks and ground training 
is covered by the dates of issue of the Airbus A330 and A340 type rating as well as by the end of 
line training date. 

1.5.1.3.2 Training courses and specific training

 h Unreliable IAS

 � 2008-2009 instruction season E33 simulator training. “IAS douteuse” exercise

Note: The A320 type rating programme at Air France in 2004 did not include a “vol avec IAS 
douteuse” exercise.

 h Stall 

 � A320 type rating: FFS session n°4: “piloting in degraded law (effect of buffeting) 
in alternate law”

 � A320 type rating: FFS session n°7: “Preventive recognition and countermeasures 
to approach to stall. DEMONSTRATION STALL WARNING”. The STALL procedure in 
force was that from December 1999

General note: The additional A330 and A340 type ratings deal only with the differences in relation 
to the type ratings already issued on other types (A320, A330, and A340).

1.5.2 Cabin crew

For this aeroplane, the regulatory minimum cabin crew composition as provided for 
in the Operations Manual is five people.

On flight AF 447, nine members of the crew were on duty in the passenger cabin:

 � One senior flight attendant, qualified on the A330/A340;

 � Two pursers, qualified on the A330/A340;

 � Three cabin crew members, qualified on the A330/A340 (cabin crew required by 
regulations);

 � Two additional cabin crew members, not fully qualified on the A330/A340 
(additional cabin crew to the minimum required by regulations);

 � A back-up cabin crew member.
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1.6 Aircraft Information

Air France had owned the aircraft since April 2005. It had been delivered new.

1.6.1 Airframe

Manufacturer Airbus

Type A330-203

Serial number 0660

Registration F-GZCP

Entry into service April 2005

Certificate of Airworthiness N°122424/1 dated 18 April 2005 issued by the DGAC

Airworthiness examination 
certificate 2009/122424/1 valid until 17/4/2010

Utilisation as of 31 May 2009 18,870 flying hours and 2,644 cycles 

1.6.2 Engines

 � Manufacturer: General Electric 

 � Type: CF6-80-E1A3

Engine N°1 Engine N°2

Serial number 811296 811297

Installation date 1/10/2004 1/10/2004

Total running time 18,870 hours and 
2,644 cycles

18,870 hours and 
2,644 cycles

The engines were subject to real-time monitoring in the framework of the engine 
condition monitoring program. Examination of the data recorded, including 
the data transmitted on the day of the accident, shows that both engines were 
functioning normally.

1.6.3 Weight and balance

The aeroplane left the stand with a calculated weight of 233,257 kg. The estimated 
takeoff weight was 232,757 kg for a maximum authorised takeoff weight of 233 t. This 
takeoff weight was broken down as follows: 

 � An empty operating weight of 126,010 kg
 � Passenger weight of 17,615 kg (126 men, 82 women, 7 children and 1 baby )
 � Hold weight (cargo and baggage) of 18,732 kg
 � Fuel weight of 70,400 kg

The fuel weight on board corresponded to a planned trip-fuel of 63,900 kg, a 
contingency reserve of 1,460 kg, a final reserve of 2,200 kg, an alternate fuel reserve 
of 1,900 kg and 940 kg of additional fuel. A LMC (last minute change) corrected the 
final weight to take into account the absence of one passenger. 
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The balance corresponding to the aeroplane’s takeoff weight and shown on the final 
load sheet (after LMC) was 23.3% of the MAC (mean aerodynamic chord), which was 
within the limits. 

The recorded data indicates that at the time of the event, the aeroplane’s weight was 
205.5 tonnes and the balance was 28.7%, which was within the limits.

1.6.4 Condition of the aircraft before departure

On arrival of the aeroplane at Rio de Janeiro the day before the accident, the Captain 
reported a problem with the VHF1 selection key on a radio management panel 
(RMP1). The aeroplane was equipped with three RMPs: RMP1 on the left-hand side, 
RMP2 on the right-hand side and RMP3 on the overhead panel. The ground engineer 
had switched round RMP1 and RMP3 to allow the aircraft to leave, in compliance 
with the regulations (departure covered by a MEL). This MEL item did not have any 
operational consequences.  

1.6.5 Maintenance operations follow-up

Daily and weekly checks are carried out. They make it possible to perform preventive 
maintenance tasks and correct any problems reported after flights by the crew.

Type A checks, on the Airbus A330, are carried out every 800 flying hours, which 
represents a check every two months approximately for an airline such as Air France. 
This check consists of:

 y Checking the systems by means of operational tests;
 y Performing greasing and lubrication operations;
 y Carrying out various checks on the oil and hydraulic fluid levels;
 y Visually inspecting the structural parts, without removal.

The last three checks of this type were performed on F-GZCP on 27 December 2008, 
21 February 2009 and 16 April 2009. 

These checks were performed in accordance with the operator’s maintenance 
programme, drawn up on the basis of the manufacturer’s recommendations and 
approved by the national authorities who are also responsible for oversight.

Examination of these maintenance documents, of the maintenance programme and 
of the aircraft’s airworthiness dossier did not reveal any anomalies.

1.6.6 Information on the airspeed measuring system

1.6.6.1 Elaboration of the speed information

The speed is deduced from the measurement of two pressures: 

 � Total pressure (Pt), by means of an instrument called a Pitot probe;
 � Static pressure (Ps), by means of a static pressure sensor.

The Airbus A330 has three Pitot probes (see below) and six static pressure sensors. 
These probes are fitted with drains allowing the removal of water, and with an 
electrical heating system designed to prevent them from icing up.
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Figure 2: Position of the Pitot probes on the Airbus A330

Figure 3: Pitot probe (with protection caps)

The pneumatic measurements are converted into electrical signals by eight ADM’s 
and delivered to the calculators in that form.

Speed calculation by the ADR

The CAS and Mach number are the main items of speed information used by the 
pilots and the systems to control the aeroplane. These parameters are elaborated by 
three computers, called ADIRU, each consisting of:

 � An ADR module which calculates the aerodynamic parameters, specifically the 
CAS and the Mach;

 � An IR module that provides the parameters delivered by the inertial units, such as 
ground speed and attitudes.
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Figure 4: Diagram of the speed measurement system architecture

There are therefore three speed information elaboration systems that function 
independently of each other. The probes known as “Captain” supply ADR 1, the “First 
Officer” probes supply ADR 2 and the “Standby” probes supply ADR 3. 

The standby instruments elaborate their speed and altitude information directly from 
the pneumatic inputs (“standby” probes), without this being processed by an ADM or 
ADR. The ISIS is a unique standby instrument integrating speed, altitude and attitude 
information. It uses the same static and total pressure sensors as ADR3. 

1.6.6.2 Systems using the speed information

The speeds calculated by the ADR’s are used, in particular, by the following systems:

 � Fly-by-wire controls system;
 � Engine management system;
 � Flight management and guidance system;
 � Ground proximity warning system;
 � Transponder;
 � Slat and flap control system.

1.6.7 Checks and maintenance of the Pitot probes

The Pitot probe checks and maintenance actions are described in the operator’s 
maintenance manual.

The Pitot probes are subject to a daily visual inspection by a mechanic, who checks 
their general condition. The crew performs the same type of check before each flight.

The following operations are performed on the Pitot probes every 8,000 hours 
(around every 21 months during a C check):

 � Cleaning of the complete probe using compressed air (“blowing” operation);
 � Cleaning of the drains with a specific tool;
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 � Test and check of probe heating by the standby electrical power supply system;
 � Check of the sealing of the circuits.

In the case of speed inconsistencies being reported by the crew, corrective actions 
are the same as those in the Type C checks.

1.6.8 Radio communications system

The Airbus A330’s radio communications system consists of the following equipment:

 � VHF and HF transmitters-receivers,
 � RMP’s,
 � Audio integration systems: ACP and AMU. 

Each VHF / HF transmitter-receiver can be controlled by one of the three RMP’s.

1.6.8.1 VHF equipment 

There are three identical VHF communication systems installed. Each system includes:

 � A transmitter-receiver in the avionics bay;
 � An antenna on the upper part of the fuselage for VHF 1 and VHF 3, and on the 

lower part of the fuselage for VHF 2.

1.6.8.2 HF equipment 

The aircraft has two HF communication systems. Each system includes:

 � A transmitter-receiver in the avionics bay;
 � An antenna coupler situated at the root of the stabiliser;
 � A shared antenna integrated in the leading edge of the fin.

Since the HF system has a range of several thousand kilometres, a large number 
of communications are received. Furthermore, the quality of the transmissions 
may sometimes be poor. Communications may also be interrupted due to natural 
phenomena.

A SELCAL call system, transmitting a visual and aural signal, informs the crew when a 
ground station is attempting to contact them.

1.6.8.3 ADS-C

All the aircraft in the Airbus A330/A340 family are equipped with the avionics 
necessary for FANS-A operations. Data link communications between the crew and 
ATC services are exchanged via VHF data, SATCOM, ADS-C and CPDLC.

The on-board Air Traffic Information Management System (ATIMS) incorporates an 
Air Traffic Services Unit (ATSU) computer that also manages the ACARS maintenance 
messages. The fact that maintenance messages continued to be delivered until 
the time of the accident demonstrates that there was no malfunction of the ADS-C 
or CPDLC. 

The ATSU computer, via the FMS, manages all the CPDLC and ADS-C messages. The 
ACARS system is integrated into the ATSU. 
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1.6.9 Systems function

1.6.9.1 Probe heating

The probes that are installed on the aircraft are heated electrically to remove water 
by vaporisation when the aeroplane is on the ground and to protect them from icing 
in flight. Three independent Probe Heat Computers (PHC) control and monitor the 
heating of the Pitot and total air temperature (TAT) probes and of the static pressure 
and angle of attack (AOA) sensors. One of the PHC’s manages the Captain probes, 
another the First Officer probes and the third the standby probes (there is no TAT 
standby sensor).

There are two function modes, ground and flight. On the ground, neither of the TAT 
sensors is heated and the three Pitot probes are heated only at low power, to prevent 
any potential damage. The PROBE / WINDOW HEAT push-button located on the 
overhead panel in the cockpit allows the crew to force the Pitot tube heating onto 
flight mode. During the flight, the probes are continuously heated.

The investigation did not reveal any malfunction of the PHC’s.

1.6.9.2 Autopilot, flight director and autothrust

The autopilot, flight director and autothrust functions are ensured by two Flight 
Management Guidance and Envelope Computers (FMGEC), connected in particular 
to a Flight Control Unit (FCU). Each of these two computers can perform these 
three functions. 

The flight director (FD) displays the control orders from the FMGEC on the PFD. In 
normal operation, with the FD’s engaged (FD push-buttons lit on the FCU), FD 1 
displays the orders from FMGEC 1 on PFD 1 (left side) and FD 2 displays the orders 
from FMGEC 2 on PFD 2 (right side). It is possible to display only one of them at 
a time, although the Airbus standard operating procedures recommend that either 
both or neither of them should be displayed. Furthermore, the autopilot 1 function 
is ensured by FMGEC 1 and the autopilot 2 function by FMGEC 2. The autothrust 
function (A/THR) is ensured by the FMGEC associated to the engaged autopilot.

The materialisation of the FD on the PFD depends on the mode selected with the 
HDG-V/S / TRK-FPA push-button:

 � In HDG-V/S mode, the FD is represented by two crossbars and represents the 
autopilot orders;

 � In TRK-FPA mode, the FPV speed vector (or “bird”) is displayed, it indicates the 
drift and slope. The associated flight director makes it possible to indicate how to 
maintain the desired path.

The FD orders, both in HDG-V/S and in TRK-FPA modes, are elaborated by the FMGEC’s.

In HDG/VS mode, the flight directors provide the pilots with aircraft handling 
assistance via the display of crossbars. The vertical (roll) bar shows the trend to follow 
in lateral control and the horizontal (pitch) bar the trend to follow in longitudinal 
control. When the bars form a centred cross, the aeroplane is following the calculated 
flight path.
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The manner in which these “cues” are determined varies depending on the mode 
selected, such that in certain modes the cues determined by the two FMGEC are 
necessarily identical, whereas in other modes they may differ. The FD’s are switched 
on by pressing the corresponding pushbuttons on the FCU. When a FD is engaged, 
the corresponding button lights up.

In order to operate, and determine the FD’s cues, the FMGEC need to use the 
data from at least two ADR’s and two IR’s, which they must consider to be valid. 
The monitoring performed by the FMGEC on the ADR and IR parameters looks for 
deviations with respect to two other values. For example, if one of the parameters 
from an ADR deviates excessively from the values indicated for the same parameter 
by the two other ADR’s, then the first shall be considered as invalid and will not be 
used. If at least two ADR’s or two IR’s are invalid, the FMGEC can no longer determine 
the FD’s cues and the crossbars disappear. However, the FD’s are not disengaged; the 
corresponding lights on the FCU remain lit.

Note: In the following, valid FMGEC is referred to when the AP/ATHR/FD functions are available.

If only one of the FMGEC’s is no longer valid, both FD’s display the orders from 
the other. If the associated autopilot is engaged, it will disconnect automatically, 
generating the AUTO FLT AP OFF red ECAM message associated with the characteristic 
“cavalry charge” aural warning and with the MASTER WARNING. Control of autothrust 
is automatically transferred to the remaining FMGEC.

If both FMGEC’s are invalid, the two FD’s disappear and the red FD flag is displayed 
on the PFD’s. If one autopilot is engaged, whichever one it may be, it will disconnect 
automatically, generating the red ECAM message AUTO FLT AP OFF. If the autothrust 
is engaged, it will disconnect automatically, generating the amber ECAM message 
AUTO FLT A/THR OFF and activation of the THRUST LOCK function. As long as this 
function is active:

 � The thrust remains locked at the value it had at the time it was activated;
 � An amber “THR LK” message flashes on the FMA at the level of the third line in 

the left column;
 � The amber “ENG THRUST LOCKED” ECAM message is displayed and a single chime 

sounds every five seconds:

Thrust must be controlled manually, either by moving the thrust control levers or by 
pressing the disconnect push-button located on the levers (instinctive disconnect).

Disconnection of the autopilot resets monitoring of the parameters carried out in the 
FMGEC: as soon as the FMGEC becomes valid again, for example when two speeds 
are once again consistent with each other, its functions are ensured again. Thus, 
if the associated FD is still engaged, the red FD flag disappears and the crossbars 
re-appear automatically. If the associated autopilot and the autothrust are also made 
available again, a crew action on the corresponding button on the FCU is necessary 
to re-engage them.
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If there is no disconnection action on the FD push buttons of the FCU, the crossbars 
reappear automatically as soon as the operating conditions are re-established 
(i.e.  when at least two ADR’s and two IR’s are once again valid) and confirmed for 
about one second.

In this case, the active modes are HDG and V/S.

Figure 5: FCU display

Operational use of the flight director

In general, the majority of the flight is undertaken with “FD ON”, with or without 
the AP, according to the phase of flight. Thus the operator’s manual and the 
manufacturer’s procedures indicate that the FD’s must be set to “ON” from cockpit 
preparation onwards. If the pilot chooses not to follow the FDs orders, the crew is 
asked to disconnect them.

It is also stated that:

 � “The FMA check is essential to ensure correct operation of the automated systems, 
but monitoring of the primary parameters such as speed, altitude, VSI, heading, 
N1, localizer, glide etc is the only guarantee for the aeroplane’s flight path”;

 � “Any deviation must result in rapid action by the pilots, if necessary even before 
having analyzed the reasons for a malfunction of an automated system”;

 � “An automatic system is, and must remain, an aid”;
 � “When the FD’s are used, given the degree to which the  A/THR modes depend on 

the vertical modes, the FD orders must be followed”;
 � “When the operation of the automatic systems does not correspond to the pilots’ 

expectations and if the cause is not immediately analyzed without any ambiguity, 
the system(s) in question must be disconnected”.

1.6.9.3 Control laws 

The Airbus A330 has fly-by-wire flight controls. The aeroplane is controlled by 
means of two side-sticks whose movements are transmitted in the form of electrical 
signals to flight control computers. This aeroplane has three flight control primary 
computers, called FCPC or PRIM, and two flight control secondary computers, called 
FCSC or SEC. Their role is to calculate the position of the various control surfaces as a 
function of the pilot’s orders.

The laws governing this transformation are called control laws. On the A330 in nominal 
operation, the control law is called the normal law. In the case where monitoring is 
triggered in the flight control system, it may be replaced by reconfiguration laws, 
known as the alternate (alternate 1 or 2) law or direct law.
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Normal law offers complete protection of the flight envelope: in terms of attitude 
(the pitch and bank angles values are limited), load factor, at high speed and at a high 
angle of attack. When the protections are not triggered, the longitudinal orders from 
the sidesticks command a load factor according to the aircraft’s normal axis and the 
lateral orders command a rate of roll.

In alternate law, the longitudinal orders from the side-sticks command a load factor 
according to the aircraft’s normal axis, like with normal law but with fewer protections. 
Furthermore:

 � In alternate 1, the lateral orders from the sidesticks still command a rate of rol;
 � In alternate 2, they command the ailerons and lift dumpers directly.

In direct law, the protections are lost and orders from the sidesticks control the 
position of the various control surfaces directly.

Another law, called the abnormal attitudes law, is triggered in certain cases where 
the aircraft’s attitude is outside certain ranges, for example when the bank angle 
exceeds 125 degrees. This is an alternate 2 law with maximum lateral authority and 
without automatic trimming (see also 1.16.3.3).

Like the FMGEC’s, the PRIM’s validate the parameters that they use by means of 
monitoring mechanisms. Concerning the airspeed, it is the voted value that is used. 
In normal operation, this is the median value. When one of the three speeds deviates 
too much from the other two, it is automatically rejected by the PRIM’s and the voted 
value then becomes the average of the two remaining values. But if the difference 
between these two remaining values becomes too great the PRIM’s reject them 
and the control law reconfigures to alternate 2. Furthermore, another monitoring 
procedure is applied to the value of the voted airspeed and triggers reconfiguring to 
alternate 2 law when it falls by more than 30 kt in one second.

In alternate or direct law, the angle-of-attack protections are no longer available 
but a stall warning is triggered when the greatest of the valid angle-of-attack values 
exceeds a certain threshold (see also 1.6.11).

1.6.9.4 Design and limit speeds

A certain number of speeds are represented by specific symbols on the PFD’s speed 
tape (protection or design speeds – “green dot”, F, S, Vmax, Valpha prot, etc).

Some of these speeds are calculated by the FMGEC, others by the PRIM’s, which 
transmit them to the FMGEC for display. In the case where the three ADR’s are rejected 
by the PRIM’s, the SPD LIM flag appears at the bottom right of the speed tape and the 
protections are lost. The current speed and the target speed remain on display. If at 
least one ADR is valid in the FMGEC’s, the Vmax speed may remain displayed on one 
side and/or the other. In the case where two speeds are consistent within each other, 
the speed trend arrow is also displayed.

1.6.9.5 Presentation of information on the PFD

A PFD in normal law and a PFD in alternate 2 are shown hereafter. The displays 
presented on these PFD’s are not exact representations of those that could have 
been displayed on AF 447 crew’s PFD’s.
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Figure 6: PFD in normal law

Figure 7: PFD in alternate 2 law
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1.6.9.6 Consequences of a blocked Pitot probe on the flight parameters

1.6.9.6.1 Description of the obstruction of a Pitot probe by ice crystals 

When highly specific climatic conditions are met, in particular with the presence of 
ice crystals in excessive quantities, the conditions for use of the probes can exceed 
the conditions for qualification and robustness. In this type of situation, a partial 
obstruction of the total pressure probes in icing conditions and at high altitude 
(above 30,000 feet) can occur. This results in a temporary and reversible deterioration 
of total pressure measurement.

In the presence of ice crystals, there is no visible accretion of ice or frost on the 
outside, nor on the nose of the probe, since the crystals bounce off of these surfaces. 
However, the ice crystals can be ingested by the probe air intake. According to the 
flight conditions (altitude, temperature, Mach) if the concentration of crystals is 
greater than the capacity for de-icing of the heating element and evacuation by the 
purge holes, the crystals accumulate in large numbers in the probe tube. 

As a result, a physical barrier is created inside the probe that will disturb the 
measurement of total pressure, this then being able to approach that of the measured 
static pressure.

As soon as the concentration of ice crystals is lower than the de-icing capacity of the 
probe, the physical barrier created by the accumulation of crystals disappears and 
measurement of the total pressure becomes correct again.

Experience and follow-up of these phenomena in very severe conditions show that 
this loss of function is of limited duration, in general around 1 or 2 minutes. 

Figure 8: Pitot probe diagram

1.6.9.6.2 Principle of elaboration of flight parameters affected by a drop in total pressure 

The static pressure (Ps), total pressure (Pt) and total air temperature (TAT) allow the 
ADR to calculate the following parameters in particular:

 � Mach;
 � Calibrated Air Speed (CAS);
 � Standard altitude;
 � True Air Speed (TAS).

On an A330-200 in cruise flight, as a result of the position of the static pressure sensors, 
the measured static pressure overestimates the real static pressure. The value of the 
measured static pressure must thus be corrected of this error before being used to 
calculate other parameters. The value of the correction depends in particular on the 
Mach and takes into account the position of the sensors on the fuselage. Thus the 
correction performed by ADR 3 is different from that performed by ADR 1 and 2. 
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Note: On A340-300 and A330-300, the correction of the of static pressure measurement is 
negligible in cruise.

For each airspeed system, the calculation principle is as follows: 

 � Knowing Pt and Ps makes it possible to calculate a Mach value that provides 
access to the correction of Ps; the Ps thus corrected is then used to calculate the 
CAS and the standard altitude;

 � With the known Mach value, the TAT measurement makes it possible to determine 
the static air temperature (SAT), which in turn makes it possible to calculate the 
true air speed (TAS); 

 � The corresponding IR then uses the true air speed to calculate the wind speed 
from the ground speed. It also uses the derivative of the standard altitude value 
that it combines with the integration of the measured accelerations to calculate 
the vertical speed, known as baro-inertial, Vzbi, which is that displayed on the 
PFD in a nominal situation.  

The following diagram illustrates these explanations: 

Figure 9: Overview
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1.6.9.6.3 Consequences of a drop in the measured total pressure

The first consequence of a drop in measured total pressure is a drop in the Mach and 
the CAS. The drop in Mach leads to a drop in standard altitude due to the correction 
of the measured static pressure. This drop is different according to the ADR under 
consideration: in the flight conditions of the event, it is of the order of 300 to 350 ft 
for the ADR 1 and 2 and of 80 ft for ADR 3. 

The drop in indicated standard altitude also causes a transient variation in Vzbi. Just 
as the drop in standard altitude is lower for ADR 3 than for ADR 1 and 2, the variation 
in Vzbi is lower for ADR 3 than for the two others, as illustrated by the graph below: 

Figure 10: Effect of a drop in total measured pressure on standard altitude and vertical speed

The drop in Mach also impacts the SAT and thus the true air speed and the wind speed. 

In the following table, the case an A330-200 flying at FL 350 at Mach 0.8 in 
standard atmosphere with a 30 kt head wind is given as an example to illustrate the 
consequences of Pitot icing that would result in a drop in Mach from 0.8 to 0.3.

Real value Indicaded value
 Mach 0.8 0.3
 Standard altitude (ft) 35,000 ≈ 34,700
 CAS (kt) 272 97
 SAT (°C) -54 -31
 TAS (kt) 461 182
 Wind speed (kt) -30 249

During Pitot probe de-icing, the same variations occur in the opposite direction.

1.6.10 Specific points on overspeed

Pilots consider that in-flight overspeeds constitute a serious risk. This perception of 
the risk has a number of origins:

 � Flying theory training (notably during ATPL):

 y the danger of a “shock stall” is considered on a par with the more classical “low-
speed” stall;
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 y the dangers associated with high speed (e.g. the onset of flutter, or the tuck-
under effect(2)) are presented even though modern aircraft generally no longer 
suffer from these characteristics, which could indeed be hazardous on some 
older-design aircraft;

 � VMO/MMO corresponds to an important limit in the performance and limitation 
curves, for airline pilots; although the “classic” stall is perceived as being fairly 
well known, and is experienced by pilots (at least during their initial training), 
excursions well above the VMO/MMO are not demonstrated in training;

 � The consequences of an excursion above the VMO/MMO are quite severe for the 
operation of the aircraft, and may require a thorough maintenance inspection;

 � The certification criteria stipulate that overspeeds should be indicated by a red 
ECAM message associated with a continuous repetitive chime (CRC) type alarm, 
whose intensity must be such that it demands an immediate reaction from 
the crew.

Modern aircraft with supercritical wing profiles offer numerous advantages, which 
include improved aircraft control characteristics at high speed:

 � The position of the aerodynamic centre is virtually stable for supercritical profiles;

 � The increase in the drag above a certain speed is so great that it is extremely 
unlikely, or even impossible, to fly faster than the demonstrated speeds that 
ensure the absence of flutter (VD/MD);

 � Fly-by-wire systems, and the load factor limitation which may be associated 
with them, help to prevent the structure from being damaged by a recovery 
manoeuvre, even when performed forcefully.

The risk associated with low speeds is a risk of loss of control resulting from 
aerodynamic phenomena, whereas the risk associated with high speeds is essentially 
a risk of a structural overload that may, in extreme cases (e.g. a sudden recovery 
manoeuvre or the onset of flutter) lead to a breakup. However, in the same way that 
stall-related risks may vary according to the type of aircraft (e.g. susceptibility to 
deep stall), not all aircraft have the same characteristics at high speed and, therefore, 
are not exposed to the same degree of risk.

1.6.11 Angle of attack protection and stall warning

The normal law of the fly-by-wire flight control system on the A330 offers high angle 
of attack protection that limits it to a value that is below the stall angle of attack. 
When this protection works, the aeroplane can not stall even if the crew maintains a 
nose-up control input to the stop.

Note: At the maximum angle of attack authorized by the normal law, if a nose-up input is 
maintained and the thrust is not sufficient to maintain level flight, the angle of attack remains 
lower than the stall angle of attack and the aeroplane will descend.

In alternate or direct law, the normal law high angle of attack protection is lost but 
the stall warning is available. It consists of a “STALL, STALL” aural warning, followed 
by a characteristic cricket sound and the illumination of the Master Warning light. It 
is triggered by the FWC when the highest of the valid angle of attack values exceeds 

(2)A high 
speed dive 
phenomenon.
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the threshold set for the flight conditions at that time. If the CAS measurements for 
the three ADR are lower than 60 kt, the angle of attack values of the three ADR are 
invalid and the stall warning is then inoperative. This results from a logic stating that 
the airflow must be sufficient to ensure a valid measurement by the angle of attack 
sensors, especially to prevent spurious warnings.

On some types of aeroplanes (Airbus A320, for example), because of the aerodynamic 
characteristics in the approach to stall, the warning threshold is often independent 
of Mach and determined for low altitudes. On the A330 as on other aeroplanes of the 
same generation, the threshold of the stall warning varies with the Mach, in such a 
way that it is triggered - in alternate or direct law – before the appearance of buffet.  

Note: The highest of the valid Mach values is used to determine the stall warning threshold. If no 
Mach is valid, the warning threshold for values below Mach 0.3 is used.

In a schematic manner, the threshold is stable below a Mach of the order of 0.3, then 
reduces in a quasi-linear manner to a Mach of the order 0.75, after which it falls more 
rapidly when the Mach increases up to Mach 0.82: 

Figure 11: Evolution of stall warning threshold in relation to Mach

A decrease in speed results in an increase in the angle of attack, if the load factor is 
constant and in a calm atmosphere. In this case, the decrease in speed corresponding 
to an increase in a given angle of attack depends on the flight conditions:

Flight condition Cruise Takeoff / 
Approach

Level of decrease in indicated speed for an 
increase of 1° in the angle of attack 25 kt 5 kt

In cruise at Mach 0.8, the margin between the flight angle of attack and the angle of 
attack of the stall warning is of the order of 1.5 degrees, but the stall warning speed 
displayed on the air speed tape (in alternate or direct law) will be around 40 kt below 
the current speed.

The angle of attack is the parameter that allows the stall warning to be triggered. Its 
value is not directly displayed to the pilots. The activation threshold of this warning 
is indicated by a marker on the speed tape in alternate or direct law. When the ADR 
are rejected by the flight control computers, this marker disappears
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1.6.12 REC MAX and OPTI flight levels

By including performance driven margins, the manufacturer defines a recommended 
maximum flight level, called “REC MAX”, which is lower than the maximum certified 
flight level. It is calculated by the FMS by taking into account the following margins:

 � It can be reached with a climb speed at least equal to 300 ft/min at MAX CLB 
thrust setting;

 � It can be maintained at a speed not less than “GREEN DOT” and with a thrust 
setting not above the maximum cruise thrust (MAX CRZ), which is less than MAX 
CLB thrust;

 � There is a guaranteed margin of at least 0.3 g in relation to the appearance of 
buffet (that’s to say that buffet does not appear as long as vertical acceleration 
remains below 1.3 g.).

Note: The FMS does not take into account in this calculation the use of the anti-icing equipment 
(nacelles or wings) or the level of bleed air (hold cooling or high level rate of the a/c packs).

The manufacturer also defines an optimal flight level, called “OPT” or “OPTI”, calculated 
by taking into account additionally the wind data and a performance parameter, 
entered by the crew, called the “COST INDEX”. A low COST INDEX minimizes fuel 
consumption; a high COST INDEX favours higher speed. The OPTI is always below 
the REC MAX.

The value of these two levels is shown on the FMS PROG page:

Note: The operator recommends to the crews to maintain a flight level between 2000 ft above and 
below the OPTI. No particular reference is made to the REC MAX, however the Air France crews 
were used to consider having to have some margin with respect to that flight level.

Figure 12: Example of a “PROG” page from FMS

1.6.13 Onboard weather radar

The Air France Airbus A330’s are fitted with Collins WXR 700X-623 type weather radar 
with a flat antenna (P/N : 622-5132-623). The opening angle of the radar beam is 3.6° 
in elevation and 3.7° in azimuth.
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Adjustments to the tilt and the gain are made manually.

Each aeroplane is equipped with two systems, only one antenna and only one control 
box. Only one system is active at a time.

The radar image is presented on the ND overlaid with navigation and TCAS information. 
It is presented when the radar is operating, when the ND is not in PLAN(3) mode and 
when the TERR(4) mode is not selected. Range adjustment is done manually.

Note: Adjusting the luminosity of the terrain and weather information is done independently of 
that of other information on each ND. 

Note: The calibrated position on the gain control sets the radar sensitivity at the level of standard 
calibrated reflectivity. 

1.7 Meteorological Conditions 

1.7.1 Meteorological situation

All of the data on the meteorological research is contained in Interim Reports 1 and 2. 

From a climatology point of view, the general conditions and the position of the ITCZ 
over the Atlantic were normal for the month of June. Cumulonimbus clusters that are 
characteristic of this zone were present, with a significant spatial heterogeneity and 
lifespan of a few hours.  

Infra-red images taken every fifteen minutes by the geostationary satellite Meteosat 9 
did not make it possible to directly observe the conditions encountered at FL350. 

The infra-red imagery analysis does not make it possible to conclude that the 
stormy activity in the zone where flight AF 447 is presumed to have disappeared 
was exceptional in character, but it shows the existence of a cluster of powerful 
cumulonimbi along the planned flight path, identifiable from 0 h 30 onwards. This 
cluster is the result of the fusion of four smaller clusters and its east-west extension 
is approximately 400 km.

Though the analysis of the imagery leads one to think that, towards 2 h 00, the 
cumulonimbi forming this cluster had mostly already reached their stage of maturity, 
it is highly probable that some were the site of notable turbulence at FL350. There 
is a possibility of significant electrical activity at the flight level, but the presence of 
super cooled water at FL350 is not very probable and would necessarily have been 
limited to small quantities.  

1.7.2 Forecast charts 

The TEMSI chart for 0 h 00 (see appendix 12) shows that the planned route touches 
the two East-West oriented cloudy masses, located on both sides of the equator 
and mentions: ISOL/EMBD CB between levels XXX (base located below FL250) and 
FL450. The highest altitude of the tropopause along the route is estimated at FL500. 
A 280°/85 kt jet stream is indicated around the 10° North parallel, to the West of the 
route, at FL410 and FL430. The following illustration shows the superimposition of 
this TEMSI with the infra-red image for 0 h 00.

(3)Display mode 
that presents, as 
a fixed image, the 
route of the flight 
plan on a map 
oriented towards 
true north centred 
on a reference 
point chosen 
by the pilot.
(4)When the TERR 
ON ND push-
button is ON, the 
ND displays the 
continuous relief 
contained in the 
EGPWS Data Base .
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Figure 13: TEMSI chart overlaid with infrarouge image at 0 h 00

Note: The TEMSI charts and the wind and temperature charts are forecasts based on a digital 
model at a synoptic scale produced 24 hours before a specific validity time, for the South America 
region. These charts present the large convective activity zones in the area described but do not 
indicate the specific position of the cumulonimbi and the cumulonimbus clusters.

The wind and temperature charts show that the average effective wind along the 
route can be estimated at approximately ten knots tail-wind. On the chart for FL340, 
the highest air temperature is located around the equator. It is estimated at - 40 °C, 
that is to say, Standard +13 °C. The CAT charts do not forecast any clear air turbulence 
along the route. 

1.7.3 Meteorological analyses 

Though the Tropical Rainfall Measuring Mission (TRMM) lightning imager indicates 
an absence of lightning in the accident zone at 2 h 30, the infrared image taken at the 
same time is consistent with those of Meteosat 9: taken together, this information 
does not make it possible to conclude that there was a sudden and exceptionally 
intense development of the convective activity between 2 h 07 and 2 h 30. 

Analysis of the observations by the TMI  instrument (TRMM microwave imager), the only 
one operating in the microwave area, indicates the presence of strong condensation 
around 10,000 metres altitude, lower than the altitude of the cumulonimbus tops. This 
strong condensation would correspond to convective towers active at this altitude, 
confirming the strong probability of notable turbulence within the convective cluster 
that was crossed by the planned flight path of flight AF 447.
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1.8 Aids to Navigation 

The GNSS is the only navigation aid near the TASIL point. 

At the time of the event, the GPS constellation gave the required navigation precision 
on the route.

1.9 Telecommunications

1.9.1 Communications between the aeroplane and the ATC centres 

Flight AF 447 was under radar control from departure from Rio de Janeiro airport to 
the INTOL waypoint, and under radar coverage up to the SALPU waypoint (RECIFE 
FIR, located between INTOL and ORARO). After this point, AF 447 was under en-route 
control (via a flight progress strip) based on information in the flight plan updated by 
the crew or by exchanges between control centres.

The crew of flight AF 447 received clearances, associated with limits beyond which 
the aircraft could not proceed without obtaining another clearance. Generally, these 
limits coincide with the boundaries of FIRs or of controlled airspace. The controller of 
the RECIFE ACC sent the crew of AF 447 the frequencies to be used in the ATLANTICO 
ACC and, after TASIL, in the DAKAR Oceanic ACC. However, the controller did not 
provide a limit clearance before the aircraft entered Senegalese airspace in order to 
allow the crew of flight AF 447 to proceed with its flight in the event of the loss of 
radio contact.

Note: Although there was no provision for this in the letters of agreement, this practice is 
nonetheless commonly observed to mitigate the limitations of HF radio communications in 
these regions. 

Note: The times mentioned come from the transcripts made by the Brazilian authority. They can 
be slightly different from those of the CVR transcript.

At 0 h 36 min 40, the RECIFE controller announced radar contact. “Maintain FL350. 
Over INTOL intersection contact ATLANTICO HF on 6535 or unable 5565. Until there, 
maintain this frequency“. The crew read back the frequencies.

At 1 h 14 min 31, the crew announced passing FEMUR and stated they were contacting 
ATLANTICO via HF. The RECIFE controller asked them to wait until passing INTOL. 

At 1 h 14 min 58, the RECIFE controller coordinated with the ATLANTICO controller 
the estimated time (INTOL) at 32 and FL350 for AF 447.

At 1 h 31 min 44, the RECIFE controller gave the crew the ATLANTICO HF frequencies: 
6649 or 5565 kHz, then 6535 kHz after the TASIL point. The crew read back the three 
frequencies. The controller told them to contact the DAKAR controller on the 6535 
kHz frequency only after TASIL.

Note: TASIL is on the boundary between the ATLANTICO and DAKAR Oceanic FIRs.  

At 1 h 33 min, an attempted ADS-C connection with DAKAR Oceanic failed due to the 
absence of a flight plan in the Eurocat system.

At 1 h 33 min 25, the crew contacted the ATLANTICO controller on the 6649 kHz 
frequency. 
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At 1 h 35 min, a new attempted ADS-C connection with DAKAR Oceanic failed due to 
the absence of a flight plan in the Eurocat system.

At 1 h 35 min 15, the crew informed the ATLANTICO controller that they passed 
INTOL point at 1 h 33, at FL350. They gave the following estimates: SALPU at 1 h 48 
then ORARO at 2 h 04. They also transmitted their SELCAL code: CPHQ. The controller 
updated the strip.

Figure 14: Strip filled out by ATLANTICO controller

At 1 h 35 min 26, the ATLANTICO controller started coordination with the DAKAR 
Oceanic controller for flight AF 447 and provided him the following elements: 
estimated at TASIL at 2  h  20, FL350, Mach 0.82. The DAKAR Oceanic controller 
interrupted the communication and told him he would call back.

At 1 h 35 min 38, the ATLANTICO controller sent a SELCAL call, whose completion the 
crew confirmed and thanked the ATLANTICO controller. 

At 1 h 35 min 46, the ATLANTICO controller asked the crew to maintain FL350 and to 
give an estimate at TASIL. 

Between 1 h 35 min 53 and 1 h 36 min 14, the ATLANTICO controller asked the crew 
three times for its estimated time passing TASIL. The crew did not answer.

The radar data show that AF 447 passed over the SALPU point at 1 h 49 min, the last 
recorded radar point corresponding to the limit of radar coverage (this passing time 
would correspond to an estimated time at TASIL of 2 h 20).

At 2 h 01 min, a third ADS-C connection with DAKAR Oceanic failed because of 
erroneous registration information in the Eurocat system.

1.9.2 Means of monitoring used by air traffic control services

Radar is no longer the only technology capable of performing air traffic monitoring, 
i.e. a representation, if possible with identification, of an aircraft’s position, that is 
regularly refreshed. The advent of satellite navigation systems and air-ground data 
links has led to other means and techniques.

Among these means is “dependent” monitoring: since the aircraft knows its position 
from its navigation systems, it can transmit this information to the ground just as it 
might transmit any other on-board parameter. This type of monitoring therefore fully 
depends on the resources on board the aeroplane. No radar is necessary; all that is 
required is a communication link with the ground. This system is called ADS(5) and can 
take two forms:

 � ADS-B (B for Broadcast): the position (in addition to other on-board information) 
is transmitted regularly without polling from the ground, with the transmission 
configuration set up only once. Receiver beacons on the ground within the optical 
range of the aircraft (250 Nm max.) are required. 

(5)Automatic 
Dependent 
Surveillance.
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 � ADS-C (C for contract): the aircraft regularly reports information, including its 
position, via a bilateral and contractual communication with a ground facility.

1.9.2.1 Functioning of ADS-C / CPDLC

Establishing the connection (contract) in flight 

A connection (logon) is a pre-requisite for the operation of CPDLC and/or of ADS-C. 
This logging-on process opens a channel of communication between the aircraft 
and the ATS system which will then be used to convey the CPDLC and/or ADS-C 
information. To establish this connection, the aircraft sends its flight number and 
registration so that the ATS system can check the consistency of this data against 
the flight plan. The aircraft is then identified by the ATS system and the connection 
is established.

The pilot initiates the first flight logon with a manual procedure. 

 h ADS-C

The introduction of ADS-C increases the monitoring capacity for Oceanic or 
continental en-route airspaces, and is intended to replace the position report in the 
airspaces where non-radar separation is applied.

In non-radar airspace, or where HF communication is difficult, the alert service may 
be provided via the ADS-C contract. 

 h CPDLC

CPDLC is a technology that makes it possible for air controllers and pilots to 
communicate directly over a datalink system. The messages exchanged between 
the two parties are selected from a sub-set of messages, in general reproducing all 
of the aeronautical phraseology. This system overcomes several problems inherent 
to voice transmission (message deformation, poor pronunciation, etc.) and to the 
transmission or reception of messages (frequency band saturation, poor propagation 
of radio waves, etc.). 

1.9.2.2  The EUROCAT-X system used by DAKAR

Eurocat is an air traffic management system that was used on an experimental basis 
by DAKAR Oceanic at the time of the accident. It includes various alerts that are 
presented to controllers, whose threshold parameters are modifiable, such as:

 � CLAM (Clearance Level Adherence Monitoring): if the aircraft’s altitude deviates 
from the authorised flight level; 

 � RAM (Route Adherence Monitoring): if the aircraft has deviated laterally from the 
route assigned to the flight plan;

 � ETO (Estimated Time Overflight): if the times reported differ from those estimated 
by the FDPS.

The illustration below shows the air traffic as displayed to the DAKAR Oceanic 
controller by the Eurocat system (in this case, the situation on 1st June 2009 at 3 h 41 
min 19 s).

Note: An aircraft may appear simultaneously on DAKAR and ATLANTICO. It may be logged on to 
and transmit via ADS-C with 3 centres simultaneously.
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Figure 15: Representation of air traffic by the Eurocat system

Following the coordination of flight AF 447 data with the ATLANTICO controller, and 
since the flight plan was absent in the Eurocat system, the DAKAR Oceanic controller 
created the flight plan in Eurocat. Consequently, the track appeared on the screen, 
and a strip was transmitted.

On the illustration, flight AF 447 appears as a green square. This symbol indicates that a 
flight plan (square) was accepted by the controller (green). In an operational context, 
the concept of an “accepted” flight means that the controller takes responsibility 
for controlling and monitoring this flight. The acceptance of the flight enables the 
monitoring functions described previously.

In comparison, flight AF 459 is symbolised as a solid blue triangle. This means that:

 � The aircraft is logged-on to ADS-C (triangle);
 � The aircraft is transmitting its position (solid triangle);
 � The aircraft has not yet been accepted by the controller (blue).

 h Reasons for rejection of the flight’s logon

The first two logon attempts were rejected due to the absence of the flight plan 
for AF 447 in the Eurocat system. Following coordination between the controllers, 
the third attempt was rejected because the flight plan did not include the complete 
registration for flight AF 447.
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1.9.3 Coordination between the control centres

At 1 h 46, the DAKAR controller asked the ATLANTICO controller for further 
information regarding flight AF 447 since he had no flight plan. The ATLANTICO 
controller provided the following elements: A332, from SBGL to LFPG, SELCAL: CPHQ.

The DAKAR OCEANIC Regional Control Centre created the flight plan and activated 
it. The result of this was to generate a virtual flight following the planned trajectory 
in the DAKAR FIR between TASIL and POMAT. There was no radio contact between 
AF 447 and DAKAR, nor any ADS-C connection. The flight remained virtual. 

At 2 h 47 min 00, the DAKAR controller coordinated flight AF 447 by telephone (ATS/
DS) with the SAL controller (Cape Verde) with the following information: passing the 
POMAT point (leaving the DAKAR FIR) estimated at 3 h 45, FL350, Mach 0.82.

At 2 h 48 min 7, the DAKAR controller told the SAL controller that flight AF 447 had 
not yet established contact with him.

At 3 h 54 min 30, the SAL controller called the DAKAR controller by telephone (ATS/
DS) to confirm the estimated time for passing the POMAT point. The latter confirmed 
that POMAT was estimated at 3 h 45. The DAKAR controller stated that the crew 
of flight AF  447 had not contacted him to correct its estimate. The SAL controller 
replied that the estimate was probably later. He asked the DAKAR controller if there 
was any change. The DAKAR controller then said that he was going to try to contact 
flight AF 447.

At 4 h 7 min 4, the SAL controller requested confirmation of the flight AF 447 estimate. 
The DAKAR controller confirmed again that POMAT was estimated at 3 h 45. The SAL 
controller pointed out that it was 4 h 08 and that the estimate was not correct. The 
DAKAR controller recalled that contact had not been established with flight AF 447. 
The SAL controller stated that he had identified flight AF459 on his radar whereas its 
estimate was later than that of flight AF 447. The SAL controller said that he thought 
that the POMAT estimate was later, at 4 h 29 or 4 h 30. The DAKAR controller told the 
SAL controller that he would call him back. 

At 4 h 11 min 53, the DAKAR controller asked flight AF 459 to contact flight AF 447.

At 4 h 20 min 27, the crew of AF459 informed the controller that they were passing 
point POMAT at FL370. They had not succeeded in contacting flight AF 447 and said 
that they had sent a message to Air France so that the airline should try to contact 
flight AF 447.

At 4 h 21 min 52, the DAKAR controller asked the ATLANTICO controller to confirm 
that flight AF 447 had passed TASIL at 2 h 20 at FL350. The ATLANTICO controller 
confirmed that TASIL was estimated at 2 h 20 but that no contact had been made.

At 4 h 37 min 7, the DAKAR controller asked the SAL controller if he had still not been 
able to contact flight AF 447 and informed him that, according to the ATLANTICO 
controller, the flight should have left the FIR at 2 h 20 and consequently the POMAT 
estimate should be 3 h 45. 

At 4 h 39 min 42, the DAKAR controller asked the ATLANTICO controller to confirm 
that he had not had contact with flight AF 447. The latter replied that he had not 
had contact at TASIL but that the first contact was at INTOL at 1 h 33. The DAKAR 
controller told the ATLANTICO controller that SAL had not established contact either. 
The ATLANTICO controller said that he would call again later.
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At 4 h 52 min 36, the DAKAR controller called the SAL controller again to ask him 
whether he had established contact. He confirmed the estimates at the limits of the 
FIR and asked the SAL controller to call him again if he established contact. 

At 4 h 53 min 50, the ATLANTICO controller called the DAKAR controller again. He 
told him that he would re-check the estimates and call him again.

At 5 h 1  min 34, the DAKAR controller asked the CANARIAS controller if he was in 
contact with AF 447. The latter replied that he had no information.

At 5 h 6 min 17, the SAL controller asked the DAKAR controller if he had a position 
report for flight AF 447 at the boundary with the ATLANTICO FIR. The latter replied 
that he had not.

At 5 h 9 min 15, the ATLANTICO controller asked the DAKAR controller if he had 
any news of flight AF 447. The DAKAR controller replied that he hadn’t and then the 
ATLANTICO controller requested confirmation that the flight was already in the SAL 
FIR. He also confirmed that SAL had not established contact with flight AF 447.

At 6 h 05 min 13, the ATLANTICO controller asked the DAKAR controller if AF 447 had 
established contact with SAL. The DAKAR controller told him no.

The continuation of the exchanges between the control centres is in paragraph 1.15.

1.10 Aerodrome Information  

The support aerodromes for this ETOPS 120 minute flight were: Natal (Brazil) and Sal 
Amilcar (Cape Verde).

1.11 Flight Recorders

In accordance with the regulations in force, the aeroplane was equipped with two 
flight recorders:  

 h Flight Data Recorder - FDR

 � Manufacturer: Honeywell;
 � Model: 4700;
 � Part number (P/N): 980-4700-042 (source: Air France);
 � Serial number (S/N): 11469 (source: Air France);
 � CSMU type number: 617-6096-014;
 � CSMU serial number: 14272.

This is a solid state flight data recorder (SSFDR) with a recording capacity of at least 
twenty-five hours. The decoding document, supplied for this aeroplane, gives around 
1,300 parameters.

 h Cockpit Voice Recorder - CVR

 � Manufacturer: Honeywell
 � Model: 6022
 � Part number (P/N): 980-6022-001
 � Serial number (S/N): 12768
 � CSMU type number: 617-6096-006 
 � CSMU serial number: 32812
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This is a solid state cockpit voice recorder (SSCVR) with a recording capacity of at 
least two hours in standard quality and thirty minutes in high quality. 

Both recorders were equipped as provided by the regulations with underwater 
locator beacons (ULB) whose transmission time is at least 30 days, on the 37,5 kHz 
frequency.

Note: The ULB manufacturer stated that their transmission time was of the order of forty days.

1.11.1 Flight recorder opening operations and read-out

The two flight recorders arrived at BEA headquarters on 12 May 2011.

 

      Figure 16: FDR                        Figure 17: CVR

For the FDR, only the protected unit (CSMU or memory module) was present. The CVR 
was complete.

 h Flight Data Recorder (FDR)

The CSMU was opened and the various internal thermal protective layers were 
removed. The memory board was extracted, and its protective coating removed.

Figure 18: FDR CSMU after removal of cover
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Figure 19: FDR memory board

Figure 20: Removal of internal protective layers

The memory board was cleaned. Visual inspection did not reveal any damage to the 
board. The board was placed in an oven for 36 hours in order to remove the moisture 
in the components and the printed circuit board. The impedance measurements that 
were then made on the input connector were in accordance with the measurements 
made on reference units.

The memory board was then connected to the BEA’s memory reader. Each memory 
component was addressed individually and read in its entirety. Analysis of the binary 
contents confirmed that the reader communicated correctly with the memory 
components and that the data extracted from each memory component was 
consistent. The memory board was then connected to the BEA’s chassis and the data 
was extracted using the manufacturer’s official hardware. The data was synchronised 
and the event flight was identified.
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 h Figure 21: Cockpit Voice Recorder (CVR)

The CSMU was released from its chassis and opened. As with the FDR, the various layers 
of thermal protection were removed, the double memory board(6) was extracted, and 
then the protective covering was peeled off. 

Figure 21: Opening of CVR CSMU

Figure 22: CVR memory board after removal of thermal protections

Figure 23: CVR memory boards before cleaning 

(6)The CVR’s data 
storage medium 
consists of two 
interlinked 
memory boards.
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Visual inspection of the boards revealed damage: a capacitor and a resistor were 
cracked on one of the boards; two decoder-type components were damaged on the 
other board.

The boards were placed in an oven for 42 hours. The damaged components were 
unsoldered and replaced. The impedance value measured at the input connector 
complied with the measurements made on reference boards. The memory boards were 
then connected separately to the BEA’s memory reader. A few memory components 
selected previously were addressed and read entirely. The consistency of the binary 
contents of each memory could then be checked using the manufacturer’s hardware 
and software. The boards were then connected to the BEA’s chassis and the data was 
extracted and decompressed using the manufacturer’s official hardware.

The following tracks were recorded:

 � Track 1: radio communications and the signal from the microphones for the pilot 
seated on the left;

 � Track 2: radio communications and the signal from the microphones for the pilot 
seated on the right;

 � Track 3: radio communications, the signal from the second copilot’s microphone 
(rear seat), and the FSK signal;

 � A track made up from the first 3 tracks mixed together;
 � CAM track: the signal from the cockpit area microphone.

Analysis of the 5 audio files downloaded revealed that the event did not occur at the 
end of the sequence of data recorded on the 5 tracks, and that the tracks were a few 
dozen seconds shorter than expected. 

Synchronisation of the various channels showed that some of the data was missing. 
Moreover, analysis of the binary contents of the EEPROM memory confirmed the 
inconsistency of the pointers(7) used by the manufacturer’s reader to start and end 
the downloading of the data.

The method subsequently adopted to recover all the saved data involved reading 
the binary contents of each memory component using the BEA’s memory reader. By 
analysing the binary contents of the memory components, the value of the various 
pointers could be determined. These pointers were then used to reconstruct the file 
in its correct chronological order. The files compressed in the manufacturer’s format 
were reconstructed using software developed by the BEA based on information 
provided by the manufacturer. The files were then decompressed using the 
manufacturer’s official hardware and software.

The 5 audio tracks obtained in this way were synchronised and their duration was 
found to comply with the expected values: more than 30 minutes for tracks 1 to 3 and 
more than 2 hours for tracks 4 and 5.

1.11.2 Analysis of the flight recorder data

 h Synchronisation of the recorders

The recorders were synchronised using the various alarms triggered during the flight, 
particularly the stall warning. The number of alarms made it possible to synchronise 
the recorders with an accuracy of approximately 100 ms.

A synchronisation of the FDR / CVR parameters is included in appendix 3.

(7)Information 
indicating the 
position of an 
item of data in 
a binary file.
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 h CVR analysis

The CVR recording started at 0 h 09 min 15 and stopped at 2 h 14 min 28.4. 

The following points are of particular note:

 � A call signal sounded in the crew flight rest facility at 1 h 56 min 06;
 � The relief pilot entered the cockpit at 1 h 59 min 26;
 � The Captain left the cockpit at 2 h 01 min 58, and the door closed;
 � The aural autopilot disconnection warning (cavalry-charge) was heard at 

2 h 10 min 04.6;
 � A first cabin crew or flight rest facility call (high-low chime) was heard at 

2 h 10 min 53.5;
 � Vibration noises were heard in the cockpit from 2 h 10 min 54 until 2 h 12 min 57;
 � Five call signals were transmitted to the crew rest facility between 2 h 11 min 09.8 

and 2 h 11 min 27;
 � The Captain returned to the cockpit at 2 h 11 min 42.5.

Analysis of the noises heard in the cockpit brought to light a movement of the 
left seat, after the relief copilot took over, of the same duration (two seconds) as a 
movement heard before the Captain left the seat.

 h Conduct of flight and navigation

The aircraft took off from Rio de Janeiro at 22 h 29 on 31 May. Auto-pilot 2 was 
engaged at about 22 h 33. The aircraft climbed gradually to flight level 350, reached 
at about 23 h 00.

The flight followed the planned route in modes ALT CRZ / NAV.

 h Turbulence

Analysis of the recorded normal load factor revealed zones of slight turbulence. 
The table below provides a summary of this analysis. The values of the variations in 
normal acceleration correspond to the gap between the maximum and minimum 
values in the zone.

Note: According to ICAO, “light” turbulence is defined as being changes in the normal load factor 
at the centre of gravity of less than 0.5 g peak to peak. 

Figure 24: Level of turbulence observed during flight
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 h Speed parameters

The calibrated airspeed recorded on the FDR is that displayed on the left-hand PFD. If 
it is invalid (speed less than 30 kt, SPD flag displayed on the speed tape), the airspeed 
recorded is that displayed on the right-hand PFD. This change in the source of the 
recorded parameter is not explicit. If both airspeeds are invalid, the SPD flag appears 
on each side and the airspeed recorded is then also invalid, with an NCD status. Its 
variation then follows a specific profile.

Note: The airspeed displayed on the left-hand PFD is generally derived from ADR1, but may also 
be derived from ADR 3, if the “AIR DATA” rotary switch located on the central console is actuated.  

Figure 25: Position and detail of “AIR DATA” selector

The airspeed displayed on the ISIS is also recorded by the FDR. This is comparable 
with the calibrated airspeed derived from ADR 3, since ADR 3 and the ISIS use the 
same external sensors (refer to 1.6.6.1). It is always considered valid, even at airspeeds 
of less than 30 kt, as long as the dynamic pressure (total minus static) does not fall 
below a certain threshold. If this threshold is reached the SPD flag is displayed on 
the ISIS speed tape, the airspeed is invalid with an FW (failure warning) status and a 
message is sent to the CMC.

Note: Between 0 and 30 kt, the minimum value of 30 kt is displayed on the ISIS speed tape.

The Mach from the ADR which provides information to the left-side PFD is also 
recorded. It is only displayed on the PFD when it is greater than 0.5.

 h ISIS parameters

In addition to the airspeed, the inertial parameters and the altitude displayed 
by the ISIS are also recorded. It should be noted that the ISIS has its own inertial 
measurement unit; whereas it is fed by the external aerodynamic sensors which also 
provide pressure data for ADR 3.

 h Warnings

Aural warning triggering (altitude alert and stall warning) was correlated with the 
recorded parameters (see also 1.16.3.2) and demonstrated nominal functioning.
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 h Parameters linked to the flight directors

The recorded parameters do not reflect the state of the FD 1 and 2 selection 
pushbuttons located on the Flight Control Unit (FCU), but the state of the respective 
FD crossbars display on the PFD. The evolution of these parameters in relation to 
time shows several changes of state that are so simultaneous that they indicate that 
the FD’s were never disengaged by the use of the pushbuttons. Thus it is to be noted 
that the FD crossbars disappeared and reappeared several times during the flight. 

Figure 26: Parameters from 2 h 10 min 04 to 2 h 10 min 26
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Figure 27: Parameters from 2 h 10 min 26 to 2 h 10 min 50
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Figure 28: Parameters from 2 h 10 min 50 to 2 h 11 min 46

1.11.3 Analysis of computers 

During the sea search operations conducted in 2011 that succeeded in locating the 
crash site and allowed the subsequent recovery of the flight data recorders, various 
computers were able to be recovered and identified. The ISIS, FCDC, eQAR and FMGEC 
computers were examined.

 h ISIS 

This computer was opened and the memory components containing the failure 
messages were extracted and then read using BEA laboratory hardware. The data 
was decoded in conjunction with the manufacturer of the equipment.
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The data recovered covered only the last two minutes of the flight, and each recorded 
failure message indicated an inconsistency in the measurement of the difference 
between the total pressure and the static pressure. These messages were correlated 
with the data from the FDR and correspond to the periods during which the speed 
information provided by the ISIS was invalid.

 h FMGEC 1 and 2 

The two computers were examined and the data from the various memory components 
were read out. The failure messages recorded by each of the functions of the two 
FMGEC’s were decoded and analysed. They are not accurately time-stamped, and 
had to be correlated with the data from the CVR and the FDR to refine their timing. 

Analysis of the messages notably enables determination of the validity, as seen by the 
FMGEC, of certain computers, particularly the ADR and IR modules of each of the ADIRU’s. 

Thus, as the Pitot probes iced-up or de-iced, inconsistencies developed between 
the airspeeds calculated by each ADR and the baro-inertial vertical speeds (Vzbi) 
calculated by each IR. The information about the validity of the ADR and IR modules 
was useful in determining the status of the various Pitot probes, explaining the 
unavailability of the flight directors, and helping to determine the parameters 
displayed on the right-side PFD.  

 h eQAR 

This computer is an unprotected parameter recorder used for flight analysis purposes 
by the operator. The data was recorded on a magneto-optical disk which was 
removed from the computer. The disk was so badly damaged that it was impossible 
to use traditional reading methods. It was therefore examined in collaboration with 
the solid-state physics laboratory at Paris-Sud University, and in conjunction with the 
manufacturer, Thales.

Readable zones were identified. The only zone likely to contain flight data was 
analysed. It relates to one second of information recorded every 100 seconds. Very 
little information could thus be recovered, and this data did not supplement the 
elements recovered by other means. The examination was therefore terminated after 
this feasibility study.

Figure 29: Optical disk showing the location of the readable zones
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 h FCDC 

The two computers were examined. The memory components containing the data 
were damaged. One of the components had been torn out and the other suffered 
from internal short-circuits. The work was brought to a conclusion.

Figure 30: Memory component from one of the FCDC

1.12 Wreckage and Impact Information

1.12.1 Localisation of the floating debris and the wreckage site

The French and Brazilian navies found debris belonging to the aeroplane from 
6  June onwards. All the debris was referenced in a database that includes about 
1,000 aeroplane parts.

Almost all of the aircraft debris was identified and classified by type: cabin, cargo 
compartment, wing, belly fairing, LDMCR (Lower Deck Mobile Crew Rest). This 
information completed the position, date and recovery time data that had been 
referenced previously.

Most of the parts found were low-density honeycomb or composite material parts.

They were identified:

 � Either directly with the Part Number when this was identifiable;
 � Or indirectly by analysing the shapes, materials, coating colours and manufacturer’s 

documentation when the Part Number was not available.
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Figure 31: All of floating debris (found between 6 and 26 June), last known position and wreckage site

The wreckage was localised on 2 April 2011 during the fourth phase of the sea 
searches.

The site of the accident was east of the Mid-Atlantic ridge, in a region with rugged 
terrain and whose ocean bed presents great variations in depth over short distances 
of between 700 metres and 4,300 metres.

The aeroplane wreckage was found about 6.5 NM on the radial 019 from the last 
known position, slightly to the left of the planned route. The wreckage rested on an 
abyssal plain at a depth of 3,900 metres. This plain, surrounded by terrain, made of 
clay type sediment, was around 15 km wide and was located west of the scheduled 
aeroplane flight path.



F-GZCP - 1st June 2009
66

Figure 32: Wreckage localisation

1.12.2 Work performed on floating debris

During 2009, the floating debris was positioned based on the aeroplane layout and 
some visual examinations.  

1.12.2.1 Repositioning of the debris according to the aircraft layout

All of the debris was gathered in a hangar at the DGA-Techniques Aéronautiques 
(former CEAT). Most of the debris could be positioned precisely in relation to the 
aircraft layout.

This repositioning provides a distribution of the debris:

 � From the forward (radome) to the aft end (vertical stabiliser) of the aircraft;
 � From the left- to the right-hand side of the aircraft for the cabin or wing parts.

Figure 33: Position of the recovered parts (exterior and cargo) 
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1.12.2.2 Visual examination of cabin parts

A high degree of vertical compression can be seen on the cabin parts such as the 
galleys, stowage, partitions and toilet doors. This vertical compression is observable 
from the front to the rear of the aircraft, and from the right- to the left-hand sides.

The overhead luggage rack attachment fittings had deformations that are due to 
vertical compression and to a forward movement of the luggage racks.

Figure 35: Part of Galley G3: downwards deformation at the level of the galley’s heavy parts

  

   Figure 36: Luggage rack fitting deformed towards         Figure 37: Metallic stiffeners deformed by buckling

                       the front Toilet door (L54)  

1.12.2.3 Visual examination of cargo bay parts

The outer parts making up the LDMCR were all found.

The wall fragments were crumpled. The reconstitution of the ceiling showed it was 
bent downwards and the floor bent upwards.

These deformations were symmetrical on the left and right sides with respect to the 
aircraft centreline.
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                   Figure 38: Floor of the LDMCR:        Figure 39: Ceiling of the LDMCR:

                with bottom-upwards deformation        with top-downwards deformation

1.12.2.4. Examination of the passenger oxygen containers

The passenger oxygen containers were all of the same type, with two, three or four 
oxygen masks depending on their position in the aircraft. Twenty-nine containers 
were found in the debris.

The deformations observed on three of them showed that they were in the closed 
position.

Note: The supply system for cabin oxygen is designed to trigger the simultaneous opening of all 
the containers in case of depressurisation. A test was carried out on F-GZCP in July 2008 during a 
type C overhaul. This test showed no malfunctions.

Figure 40: Passenger oxygen container recovered closed:

the deformations on the cover matched those on the box 

In normal operation, the oxygen is sent to the mask when the passenger releases the 
system’s lock-pin by pulling on the mask. Several pins were found in place, closing 
the oxygen circuit.
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Figure 41: Passenger oxygen container recovered open: the three pins are in place

The oxygen masks were not released: there was no depressurisation in flight.

1.12.2.5. Visual examination of wing and trimmable horizontal stabiliser flight 
control surfaces

The following parts were found:

 � Left wing: part of the inboard aileron, part of the outboard flap trailing edge, 
parts of spoilers 1 and 6;

 � Right wing: part of the outboard flap trailing edge, parts of spoilers 2 and 6;
 � Flap track fairings for flaps N°2, 3, 4 and 5 left-hand side, N°2, 3 and 4 right-hand 

side;
 � Parts of the left- and right-hand elevators.

Visual examination of these parts showed deformations and failures resulting from 
bottom-upwards loads. 

Several parts of the flap extension mechanism fairing were found. There were 
marks on two of them (positioned at the level of flap track N°3), made by the flap 
extension track on impact. Analysis of these marks (morphological and dimensional 
examinations) and comparison with an identical aeroplane made it possible to 
determine that the flaps were in the “retracted” position (see photo below) at the 
time of impact with the water (measurement of the distance between the track and 
the lower surface of the flap, position of the carriage on the track).

Figure 42: Flap extension mechanism (or flap track) No. 3 in retracted position
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Figure 43: Part of the No. 3 flap track fairing on the left wing

1.12.2.6 Visual examination of the vertical stabiliser

1.12.2.6.1 General examination of the vertical stabiliser

The vertical stabilizer separated from the fuselage at the bottom of the fin, at the 
three attachments:

 � The forward attachment (male and female lugs) and the lower part of the side 
panels (lug reinforcements)  were missing;

 � The centre and aft attachments were present: male and female lugs and parts of 
the fuselage frames.

Figure 44: Fin – In the foreground the base of the fin with the central and forward attachment lugs 

The front of the fin showed signs of symmetrical compression damage:

 � Failure of the leading edge right- and left-hand panels
 � Longitudinal cracking of the leading edge stiffener
 � HF antenna support (attached to the forward spar): failure of the lower part, 

crumpling indicating bottom-upwards compression loads.
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Figure 45: Rib 2 bent upwards as a result of bottom-upwards compression loads 

Figure 46: HF antenna support

1.12.2.6.2 Examination of the fin – rudder attachments

The vertical load pick-up arm in the rudder’s hinge axis (arm 36G) broke at the level 
of the attachment lug on the rudder side. 

The size of this arm is calculated to withstand a maximum load of 120,000 N, 
corresponding to a relative acceleration of 36G of the rudder in relation to the vertical 
stabilizer.
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Figure 47: Arm 36G, right view: failure of the rudder attachments

Shear cracks, along a top-down axis, can also be seen on the rudder hinge arm 
attachment fittings close to arm 36G.

These observations indicate that the vertical stabiliser was subjected to a load greater 
than 120,000 N in the rudder’s hinge axis.

1.12.2.6.3 Examination of the Rudder Travel Limiter Unit (RTLU)

The RTLU was found in its place in the fin and disassembled. An examination was 
performed at the manufacturer’s and showed that it would allow travel of the rudder 
measured as 7.9° +/- 0.1°. This value is consistent with the FDR data.

Note: The maximum travel of the rudder is calculated in relation to the aeroplane configuration, 
its speed and its Mach number. This travel can be commanded between 4 degrees and 35 degrees.

1.12.2.6.4 Examination of the fuselage parts (remains of the skin, frames and web frames)

The fuselage was sheared along the frames and centre and aft attachment lugs by 
loads applied bottom-upwards.
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Figure 48: Frame 87: shearing of the frame and fuselage skin along the frame 

Figure 49: Right-hand aft lug: shearing of the fuselage along main frames 86-87

The part of frame 87 that can be seen had undergone S-shaped deformation: the 
left-hand side forwards, and the right-hand side backwards. The horizontal stabiliser 
actuator supports were deformed and broke in a backwards movement from 
the front. These observations indicate a backwards movement of the trimmable 
horizontal stabiliser.
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Figure 50: Frames 84 to 87: S-shaped deformation of frame 87, with frames 84 and 85 pushed in backwards;

failure of the horizontal stabiliser actuator supports between frames 86 and 87 (red circle)

Frames 84 and 85 were pushed in backwards in the middle. These deformations likely 
resulted from the resistance to the forward movement of the aeroplane through water. 

1.12.2.6.5 Examination of the fin-to-fuselage attachments

The centre attachment had pivoted backwards with the parts of the frames and web 
frames that were attached to it. The aft attachment had pivoted forwards with the 
parts of the frames and web frames that were attached to it.

Figure 51: Fin centre and aft attachments

The aft attachment lugs (male on the fin and female on the airframe) had marks 
indicating a backwards movement of frames 86 and 87 as a whole.
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Figure 52: Rear view of the left-hand aft lug: there were marks showing

a backwards pivoting of frames 86 and 87

The centre and aft lateral load pick-up rods showed damage that was consistent with 
this backwards pivoting of frames 84 to 87:

 � Tensile failure of the centre spar at the level of the centre rod attachments;
 � Compression failure of the aft spar at the level of the aft rod attachments and 

failure of the left-hand rod by buckling.

Figure 53: Tensile failure of the centre spar at the level of the attachment of the lateral load pick-up rods 
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Figure 54: Compression failure of the aft spar at the level of the attachments of the lateral load pick-up rods 

and failure of the left-hand rod by buckling

1.12.3 Examination of the wreckage

1.12.3.1 The wreckage

The aircraft debris was dispersed over an area around 600 metres long and 200 metres 
wide and the debris field was roughly oriented 080° / 260°.

The whole wreckage was highly fragmented with some large pieces of debris.

The densest debris (central section, engines, APU, landing gear) was found to the 
east of the site and the lighter debris to the west.

Outside the main area of 600  metres by 200  metres, a rear left fuselage panel 
containing eleven windows and around seven metres long was found approximately 
two kilometres south-west of the area. Part of the lower surface of the trimmable 
horizontal stabiliser was also found slightly to the south-west of this area.

Figure 55: Sonar Images of the debris field
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1.12.3.2 Examination of some parts based on underwater video images 

The following observations were made on the basis of images supplied by the REMUS 
and the ROV’s.

The lower elements of the fuselage were badly broken up and deformed. In these 
areas, crushing of the sheet-metal between the ribbing was noted, which indicates a 
vertical component at the time of impact.

Figure 56: Parts of the fuselage

Both wing boxes had multiple ripped openings. The central wing box, despite its 
rigidity, was broken up.

The level of debris fragmentation and deformation indicated very high energy on 
contact with the surface of the water.

The left engine air entry leading edge had significant deformation on its lower part. 

Figure  57: Left engine air intake

The engine pylons were found separated from the wings. They had deformations 
compatible with loads on the engines from below to above.
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Figure 58: Engine pylon

1.12.3.3 Examination of parts brought to the surface

Some parts were brought to the surface and were subjected to a first visual 
examination on board the ship.

Figure 59: Cartography of the parts subsequently brought to the surface

The visual examination of the two engines showed that they were at high RPM at the 
moment of impact with the sea.
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Figure 60: Front view of engine

According to the manufacturer’s technical documentation, the relative position of 
the actuator and the THS screwjack corresponded to a THS position of between 13° 
and 13.5° nose-up.

Figure 61: Trimmable horizontal stabiliser screwjack after being raised on board

Parts from the recovered cockpit seats were identified:

 � Left seat: seat and back with belts,
 � Right seat: seat, back with belts, right armrest and seat height adjustment 

mechanism,
 � Jump seat for fourth occupant. 

These elements were subjected to a thorough examination. (see §1.16.8).
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1.12.4 Summary

The examinations undertaken showed that there was no depressurisation and that 
on impact:

 � The aeroplane was intact;
 � The aeroplane struck the surface of the water with a pitch-up attitude, a slight 

bank and a high vertical speed;
 � The flaps were retracted;
 � The engines were at high RPM ;
 � The stabiliser was near to its maximum pitch-up position.

This information was confirmed by the analysis of the data from the flight recorders.

1.13 Medical and Pathological Information

Autopsy reports and photographs of the victims found on the surface of the sea were 
provided to the BEA by the Brazilian authorities. It should be noted that interpretation 
of the injuries is disrupted by the effects of prolonged presence in water.

The autopsies performed identified fractures of the spinal column, the thorax and 
the pelvis. The fractures described were located mainly at the level of the transition 
vertebrae.

The compression fractures of the spinal column associated with the fractures of the 
pelvis, observed on passengers seated throughout the cabin, are compatible with 
the effect, on a seated person, of high acceleration whose component in the axis of 
the spinal column is oriented upwards through the pelvis.

Examination of the bodies recovered during phase 5 confirmed these observations.

In conclusion, taking into account the vertical acceleration at the time of impact with 
the surface of the water, there was no possibility of surviving the accident.

1.14 Fire

There was no evidence of fire or explosion.

1.15 Survival Aspects and SAR

The paragraph below describes the data collection operations concerning the Search 
and Rescue operations (SAR) that would lead to the departure of the first resources 
deployed for the AF 447 searches.

Between 2 h 47 and 5 h 30, the ATLANTICO, DAKAR Oceanic, SAL and CANARIAS 
control centres communicated with each other several times and questioned the 
estimated times of passage of flight AF 447 at reporting points and the fact that none 
of them had had either radio or radar contact with the aeroplane after 1 h 35. No alert 
phase had yet been triggered.

During this time, the following actions were taken by the various parties:

At 4 h 18, following the DAKAR controller’s request to relay flight AF 447, the crew 
of flight AF459 sent a message to Air France OCC to try and contact AF 447. The OCC 
dispatcher sent an ACARS message to the crew of flight AF 447: the message was 
rejected.
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At 4 h 46, the Air France OCC maintenance deputy shift supervisor asked to allow for 
the  possible unavailability of F-GZCP due to severe turbulence in flight. 

At 4 h 59, an OCC officer called the DAKAR controller. They both noted their inability 
to contact the crew of AF 447. The dispatcher stated that the ACARS messages to AF 
447 were all rejected. 

At 5 h 10, the SAL controller contacted the ATLANTICO controller about flight AF 447. 
There then followed a discussion that covered in full the reporting points transmitted 
by the aeroplane, and those estimated by the flight plan (INTOL at 1 h 33 and TASIL at 
2 h 20). The SAL controller explained that he had radar and had had no radar contact 
with AF 447, and that the DAKAR centre had had no contact either. The ATLANTICO 
controller responded that according to his estimates based on other flights and his 
calculations, flight AF 447 should be entering the SAL FIR in a few minutes, at 5 h 
11. The SAL controller then responded that he would monitor the appearance of a 
radar return.

Between 5 h 11 and 5 h 26, the OCC shift supervisor tried twelve times to contact the 
crew of flight AF 447 via SATCOM without success.

At 5 h 17, the OCC maintenance deputy shift supervisor requested information on 
the meaning of failure messages received at the Hub Maintenance Centre (HMC). 
The maintenance centre officer indicated that the problems seemed to be located 
in the Pitot probes. He explained that they had received a number of warnings via 
ACARS on the flight controls. The HMC officer said he knew of similar cases involving 
aeroplanes passing through storms. The HMC officer also stated that there was no 
message relating to a failure of the communication system.

At 5 h 23, the ATLANTICO controller informed his ARCC associate about the uncertainty 
of the position of flight AF 447. The ARCC triggered the SAR process, consisting 
initially of gathering all the data concerning flight AF 447 (take-off confirmation, 
flight plan, autonomy, radar trajectory among others) from several organisations.

Many telephone contacts were made between the various control centres, the OCC 
and the ARCC’s involved. Details of these communications are in appendix 4.

The following is of note:

 � At 5 h 23, ATLANTICO-RECIFE ARCC registered the disappearance of the AF 447 
and triggered the SAR process which consisted initially of gathering information;

 � At around 8 h 00, the Air France OCC set up a crisis group.;

 � At 8 h 22, the Madrid centre sent the alerfa-incerfa message to the ATLANTICO, 
DAKAR, SAL, CANARIAS, CASABLANCA and BREST centres;

 � At 9 h 09, the BREST centre issued a detresfa message;

 � At 9 h 31, the SAL control centre sent an alerfa-incerfa message;

 � At 11 h 04, the first Brazilian aeroplane took off for SAR operations; 

 � At 11 h 07, it was announced that flight AF 447 was at the limit of its fuel autonomy;

 � At 12 h 04, the ATLANTICO-RECIFE ARCC defined a first position for the searches 
(from SALPU);
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 � At 12 h 14, the Bréguet Atlantique 2 took off from DAKAR and was put at the 
disposal of the Brazilian authorities;

 � At 13 h 00, the ATLANTICO-RECIFE ARCC obtained the last coordinates transmitted 
by AF 447 from the Air France crisis group;

 � At 13 h 59, the intervention by the Gris Nez MRCC enabled confirmation of the 
Natal MRCC as coordinating body for the search and rescue resources.

From the last conversations between the aeroplane and the ground, it took more than 
3 h 30 min before the SAR process was put into effect, more than 6 h 30 min to launch 
the INCERFA and ALERFA phases and over 9 hours to send the first search aircraft.

1.16 Tests and Research

1.16.1 Underwater search and recovery operations 

The BEA was mandated after the end of the search and rescue operations (SAR) with the 
organisation and coordination of operations carried out by France for the search and 
recovery of the wreckage. Given the distance from the accident and the topography 
of the sea bed, this particular mission required the considerable mobilisation of air, 
naval and underwater forces and, even more so, of multidisciplinary skills (safety 
investigators, scientists, the army, underwater search experts, etc).

The wreckage of the Rio-Paris flight aeroplane was found on 2 April 2011, 22 months 
after disappearing. A special document on the four sea search phases and on the 
recovery phase will be the subject of a separated publication.

1.16.1.1 Summary of Phases 1 to 4

The first search phase aimed at detecting and locating the acoustic signals transmitted 
by the Underwater Locator Beacon (ULB) fitted on each flight recorder(8). As a priority, 
the aeroplane’s planned flight path as well as the greatest possible area inside the 
40 NM circle was swept by two Towed Pinger Locators (TPL)(9).  

No signal from either of the beacons was detected by the sensors deployed in the 
area despite TPL passing by, on two occasions, not far from the debris field, on 22 
and 23 June 2009.

Sonar imaging systems with the ability to recognise components on the sea bed were 
deployed during the phases that followed.

 � Phase 2 was carried out from 27 July to 17 August 2009 with the help of the 
IFREMER deep tow system, called SAR, over an area of about 1,100 km2. This 
search was unsuccessful but nevertheless enabled the BEA to carry out a complete 
bathymetric survey of the 40 NM circle. This very precise reading of the underwater 
profile carried out by the multi-beam echo sounder mounted on the hull of the 
research vessel the Pourquoi Pas? enabled the BEA to ensure the subsequent safe 
and efficient deployment of the autonomous and towed resources. 

 � Phase 3 was organised around two on-site search periods: one from 2 to 
25 April 2010, and the second from 3 to 24 May 2010. The ORION deep tow sonar 
and the three REMUS(10) 6000 autonomous underwater vehicles (AUV) operated 
by the Wood Hole Oceanographic Institution (WHOI) explored an area of nearly 
6,300 km². This search also proved unsuccessful.

(8)There were 
two beacons on 
the A-330, one 
attached to the 
cockpit voice 
recorder (CVR) 
and the other to 
the flight data 
recorder (FDR).
(9)The two US 
Navy TPL’s are the 
only two towed 
hydrophones in 
the world able 
to operate to a 
depth of up to 
6,000 metres. 
(10)Two AUV 
REMUS 6000 
belonging to the 
Waitt Institute 
for Discovery 
(WID), and one 
belonging to 
the German 
oceanographic 
institute IFM 
GEOMAR. 
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The lack of success during the first three search phases led the BEA to undertake a 
complete review of both the means used and the zones explored. Drawing on all the 
elements provided by various partners in the searches (scientific institutes, statistical 
analysts, oceanographers, etc), and comparing them with the result of the previous 
phases, the BEA decided to redirect its search strategy by leading a final systematic 
search operation in all the areas not explored during phases 2 and phase 3, beginning 
within a circle of 20 NM from the last known position.

The Phase 4 operations took place from 25 March to 9 April 2011. The REMUS 6000 
AUVs were used again in the search during this phase. They were operated by WHOI 
from the Alucia, property of Deep Ocean Expeditions.

Discovery of the accident site 

On 2 April 2011, the data from the 18th AUV mission was recovered, and analysis of 
the sonar images brought to light a concentration of backscattered parts on the sea 
bed distributed over a rectangular area of about 600 by 200 metres.

A mission to identify the type of components by photographs was immediately 
scheduled.  This mission ended on 3 April 2011 and the photos taken confirmed that 
the detection from the sonar images corresponded to aeroplane components. Over 
the following days additional AUV missions were conducted to determine the scope 
of the wreckage field, and obtain a complete photographic record of the primary 
wreckage area.

1.16.1.2 Organisation of Phase 5 operations

Phase 5 was organised in two stages. The first, which took place on-site from 26 April 
to 13  May 2011, involved the search for and recovery of the flight recorders and 
aeroplane parts. The second took place from 21 May to 3 June 2011 with the aim of 
underwater observation of the whole wreckage, mapping the debris and finally the 
recovery of human remains.

All these operations were carried out from the Ile de Sein cable vessel operated by 
Alcatel Lucent and Louis Dreyfus Armateurs, using Phoenix International’s REMORA 
III autonomous underwater vehicle.

Discovery and recovery of the flight recorders 

On 1st May 2011, the investigation team located and identified the protected module 
of the flight data recorder (FDR). The latter was raised and lifted on board the Ile de 
Sein by the ROV REMORA 6000 the same day. The following day the CVR was located 
and identified. It was raised and lifted on board the Ile de Sein on 3 May 2011. The 
flight recorders were first transferred to the port of Cayenne (French Guyana) by the 
French navy patrol boat La Capricieuse, then transported to the BEA by air on 12 May 
2011. The recovery of aeroplane parts continued during that period, with in particular 
the engines and the avionics bay containing onboard computers being raised.

The underwater search and recovery operation for the wreckage of the F-GZCP ended 
on 16 June 2011, the date the aeroplane parts arrived at the port of Bayonne.
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1.16.2 Study of unreliable indicated airspeed events (temporary loss or 
anomalies) occurring in cruise on Airbus A330/A340

The BEA has studied thirteen unreliable indicated airspeed events involving the 
temporary loss of this reading, or other anomalies, for which it had access to crew 
reports, recorded parameters and PFR. The following operators have made this data 
available to the BEA:

 � Air France (4 cases);
 � TAM (2 cases);
 � Qatar Airways (4 cases);
 � Northwest (1 case);
 � Air Caraïbes Atlantique (2 cases).

Several other known events were not studied due to the absence of sufficient 
information. The BEA also interviewed some of the crews involved in these flights.

The analysis was limited, particularly because some relevant parameters were not 
recorded. For example, the three CAS and the three angles of attack were not all 
recorded (one as a minimum, sometimes two). The audible stall warning and the 
position of the probe/window heat push-button were not always recorded. 

This study identified a number of significant points in terms of the environment, 
automated systems and flight path control.

 h With regard to the environment, it is notable that:  

 � The flights levels were between FL 340 and FL 390;
 � The air masses were highly unstable and characterised by powerful convection 

phenomena;
 � The static temperature was less than  - 40°C in twelve cases. In ten cases, it 

exceeded by between 0°C and 6°C the temperature in standard atmosphere; in 
the three other cases it was higher than STD+10°C;

 � Crews reported that they had not observed significant radar returns for their 
selected flight path but had identified active zones nearby or at lower altitude; 
this was also a finding of a study by Météo France (national meteorological office) 
into these events, conducted at the request of the BEA;

 � Three crews reported having heard or observed what they identified as rain or ice;
 � All the events occurred in IMC;
 � The recordings of the total or static temperatures reveal increases of ten to 

twenty degrees during the event, in some cases with the increase starting before 
the airspeed anomalies were observed, except in one case where the increase 
was smaller;

 � Turbulence was always recorded and reported. The levels felt by the crews varied 
from light to strong. The range of normal acceleration values recorded varied 
from [0.75/1.2g] to [0.2/1.9g].

 h Concerning automatic control and systems, the following points are of note: 

 � The aircraft’s autopilot disconnected in all cases, with no intervention from 
the crew;

 � In all cases, the crew regained the use of the autopilot and autothrust;
 � In twelve cases, the flight control law changed to alternate until the end of the 

flight. In one case, this transition was temporary;
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 � The disconnection of the autopilot was accompanied by the disappearance of the 
associated flight director, and sometimes by the other flight director for a variable 
period of time. In all the cases studied, the flight directors reappeared during the 
event. In certain cases, this reappearance was recorded simultaneously with a 
return to values very close to the two speeds;

 � In seven cases, an autopilot was re-engaged during the event. In two of these, 
the re-engagement occurred even though two speeds were consistent with each 
other, but erroneous;

 � The autothrust disconnected in ten cases, leading to the activation of the thrust 
lock function. In five of these cases, this function remained engaged for more 
than one minute;

 � In one case, the crew had disconnected the autothrust and commanded the thrust 
corresponding to the speed recommended for turbulent atmosphere before the 
event;

 � In two cases, the autothrust did not disconnect and the flight directors did not 
disappear. The recordings of engine RPM parameters reveal fluctuations in thrust 
with N1 values of between 48% and 100%.

 h Concerning speed anomalies:

 � They can be characterized by two distinct signatures:
 y Intermittent drops (spikes),
 y A drop followed by levelling off (continuous period);

 � These speed anomalies were accompanied by an instantaneous increase in 
indicated static temperature (and in total temperature, when it was recorded), 
and a “fall” in indicated altitude, particularly on the A330-200 (see paragraph 
1.6.9.6). In both cases, the lowest speeds recorded were less than 100 knots.

 � The maximum recorded duration of continuous invalidity of indicated speed was 
three minutes and twenty seconds.

 � When the speed values calculated by the ISIS were recorded, the signatures and/
or durations of their anomalous values show differences from those noted on the 
recording of the speed displayed on the Captain’s side.

 h With regard to the crews’ reactions, the following points are notable: 

 � The variations in altitude were contained within about one thousand feet. There 
were five cases of deliberate descent, including one of 3,500 feet. These descents 
followed a stall warning;

 � Four crews did not identify the unreliable airspeed  situation: in two cases, the 
crews concluded that there was an inconsistency between the angles of attack; in 
the two other cases, the crew considered that the speeds were erroneous rather 
than unreliable.

For the cases studied, the recorded flight parameters and the accounts given by 
the crews did not reveal any application of the memory items from the unreliable 
airspeed procedure, nor the procedure itself:

 � The reappearance of the indications of flight directors on the PFD suggests that 
no disconnection inputs were made into the FCU;

 � The durations of engagement of the thrust lock function indicate that no attempt 
was made to rapidly disconnect the autothrust followed by a manual adjustment 
of the thrust to the recommended value;

 � There was no attempt to command display a pitch attitude of 5°. 
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Important points revealed by analysis of these 13 unreliable IAS.

In the cases studied:

 � The aeroplanes remained within the flight envelope during these relatively 
short events;

 � The FD’s did not disengage;
 � The autothrust had been disconnected before the anomalies began in one case. 

In the other cases, either the autothrust remained engaged, or the thrust lock 
function remained active for several dozen seconds before the manual adjustment 
of the thrust. 

Reactions of the crews

This type of anomaly resulted, in most cases, in the AP disconnecting, the FD 
disappearing, the autothrust changing to thrust lock and the flight control law 
changing to alternate. 

The pilot flying prioritised flying tasks and the aircraft’s flight path, maintaining a 
cruise attitude or descending to increase the margins for manoeuvre within the flight 
envelope. The decision to descend may also have been decided as a result of the stall 
warning triggering.

The reappearance of the flight directors on the PFD when two airspeeds are calculated 
as similar may prompt the crew to promptly engage an autopilot. However, although 
the magnitude of these speeds may be the same, they may be erroneous and low, 
and could cause the autopilot to command flight control surface movements that are 
incompatible with the aircraft’s actual speed. 

In those cases where the autothrust is automatically disconnected and the thrust 
lock function activated, the absence of an appropriate manual adjustment of the 
thrust may generate a risk of the combination of the pitch attitude and thrust being 
unsuitable, notably when this disconnection occurs when the N1 value is low.

Stall warning

Nine cases of the activation of the stall warning were noted. 

The stall warning activates when the angle of incidence exceeds a variable threshold 
value. All the warning activations can be explained by the fact that the aircraft was in 
alternate law at cruise Mach and in turbulent zones (see also paragraph 1.6.11). Only 
one warning triggering event was caused by a distinct input on the controls.

Case of TAM flight on 12 November 2003

This case, which happened to an A330-200, was not one of the thirteen events studied 
above because no crew report was available. However, in the light of the data from 
flight AF 447, it seems useful to mention it. In fact, following icing of at least two 
Pitot probes at FL360, the crew made some high amplitude flight control inputs (to 
the stop), sometimes simultaneously. When the AP disengaged, both pilots made 
pitch-up inputs (one went to the stop) that resulted in an increase in pitch of 8°. On 
several occasions, the stall warning was triggered due to the nose-up inputs, and the 
crew reacted with strong pitch-down inputs. During the 4 minutes that the sequence 
lasted, the load factor varied between 1.96 g and -0.26 g, the pitch attitude reached 
13° nose-up and the angle of attack reached 10°. Altitude variations, however, were 
less than 600 ft.
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1.16.3 Analysis of functioning of systems 

1.16.3.1 Analysis of the initial sequence

Analysis of the FDR parameters and of the data contained in the two FMGECs’ non-
volatile memories showed that:

 � The ADR 2 speed fell between 2 h 10 min 03.5 et 2 h 10 min 05;
 � the ADR 1speed fell for less than one second from 2 h 10 min 04 s to 2 h 10 min 05, 

causing:
 y the disconnection of the autopilot, 
 y the triggering of “PITOT PROBE” monitoring in the FCPC causing the transition 
to alternate 2B law;

 � The ADR 3 speed fell temporarily from 2 h 10 min 07 s to 2 h 10 min 10 s, causing, 
in the following second, the loss of autothrust and the disappearance of the Flight 
Directors; it then fell again at 2 h 10 min 14, 

 � The speed on ADR 1 fell again at about 2 h 10 min 08 s, causing the loss of the 
autothrust and of the flight directors within the next second.

At 2 h 10 min 05, the loss of FD 2 recorded on the FDR corresponds to the loss of this 
function in the FMGEC 2 as a result of the rejection of ADR 1 and 2 by this computer. 
However, this does not correspond to a loss of the FD display on the right side PFD. 
In fact, when the computation by the flight director is unavailable in FMGEC 2, the 
orders computed by  FMGEC 1 are displayed on the right side PFD.

1.16.3.2 Analysis of the operation of the stall warning

From 2 h 10 min 05 onwards, the flight control law was alternate and the stall warning 
triggered and stopped several times until the end of the flight. Only the values for 
one Mach calculation were recorded, although the warning triggering threshold 
depends on all three (refer to the description of the operation of this warning in 
section 1.6.11).

From 2 h 10 to 2 h 11

The graph below shows the change in the three recorded angles of attack as a 
function of time, in addition to the theoretical threshold at which the stall warning 
was triggered. This threshold was determined from a Mach value that was itself 
calculated from ground speed, wind and static temperature parameters. Comparison 
of this calculated Mach with the recorded Mach shows a good correlation.
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Figure 62: Evolutions of recorded angles of attack and of the stall warning trigger threshold

The activations of the warning picked up by the CVR were identified as occurring 
at between 2 h 10 min 10.4 and 11.3 and between 2 h 10 min 13 and 13.4. The 
short duration of activation did not make it possible to detect it from the “Stall 
warning” parameter, but the FWC 1’s “Master warning” parameters were triggered 
on one point at this time. However, this warning should have continued until about 
2 h 10 min 15.5, and then have been triggered again between 2 h 10 min 17 and 19. 
The disabling of this warning was probably due to the fact that, between 13.4 and 
15.5 and then between 17 and 19, and possibly at other times, the three Mach values 
were abnormally low (three Pitot probes iced up). The warning triggering threshold 
then suddenly increased to values of about 10°, much greater than the recorded 
angles of attack, which led to the warning stopping.

After 2 h 11

Analysis of the parameters showed that the stall warning stopped concomitant with 
the invalidity of the three angles of attack, and was triggered again when at least one of 
them became valid again. In view of the extreme values of angle of attack experienced 
by the aircraft, the change to the threshold as a function of Mach was secondary.

The stall warning triggered again ten times after 2 h 11 min 45; a correlation was noted 
between this triggering and a pitch-up input by the PF on two occasions, between 
2 h 12 min 52 and 2 h 12 min 57 then between 2 h 13 min 52 and 2 h 14 min 02.
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Note: the behaviour of the angle of attack 1 was slightly different from that of the two others 
(“lazy” behaviour) . Though the cause of this difference could not be established, it had no effect 
on the functioning of the systems.

1.16.3.3 Analysis of the flight control law

The flight control law changed from normal to alternate at about 2 h 10 min 05. The 
alternate law was 2B and it did not change again thereafter. Due to the rejection of 
the three ADR by the flight control computers (PRIM), the abnormal attitudes law 
could only have been triggered for criteria relating to inertial parameters, but these 
conditions were never met.

A simulation of the operation of the flight control computers was undertaken, 
which involved recalculating the movements of the elevators and of the trimmable 
horizontal stabiliser (THS) based on pilots’ inputs and compared the results against 
FDR parameters. This simulation was continued up until the end of the flight. The 
recalculated deflection angles for the elevators and the PHR are consistent with the 
parameters recorded.

Figure 63: Comparison between the recorded positions of the elevator and THS and the simulation

1.16.4 Analysis of aircraft performance

1.16.4.1 Aircraft behaviour

A simulation of the aircraft behaviour was conducted based on the theoretical model 
and on the PF’s inputs (sidestick and thrust). The validity of the model is limited to 
the known flight envelope based on flight tests. Consequently, it was possible to 
conduct the simulation on the period from 2 h 10 min 00 s to 2 h 10 min 54 s. 
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Prior to the disconnection of the autopilot, a constant headwind component of 
15 kt had to be added in order to make the simulation’s ground speed match the 
recorded parameter. This value was consistent with the wind parameters recorded. 
The turbulence was modelled by introducing gusts so that the simulated parameters 
were copied from the parameters recorded. 

The simulation demonstrated the following:

 � From about 15 seconds before disconnection, the autopilot countered aerological 
disturbances whose intensity would be defined as “light” on the ICAO scale 
(variations in vertical acceleration of less than 0.5 g);

 � When the autopilot disengaged, a concomitant lateral gust caused the aircraft to 
depart from its flight path with a roll to the right;

 � The subsequent roll movements resulted from the inputs by the PF;
 � The aircraft’s movements in the longitudinal axis were primarily due to the inputs 

by the PF, with the exception of small variations due to the aerology (variations in 
normal acceleration of about 0.2 g);

 � The turbulence eased as from about 2 h 10 min 30 s;
 � With no PF inputs, the aircraft would have gradually rolled further to the left but 

the variations in pitch attitude and altitude would have been small.

Figure 64: Comparison between altitudes of the aeroplane and the simulation (longitudinal axis)
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1.16.4.2 Analysis of the exit from the flight envelope

At the time of the event, the flight envelope of the aeroplane was as follows:

Figure 65: Flight envelope

At 2 h 10 min 51, when the aircraft was at about 37,500 ft and still climbing, the stall 
warning was triggered (see 1.16.3.2). A change in the recorded normal acceleration 
behaviour was demonstrated from 2 h 10 min 53, at an angle of attack about 1 to 2 
degrees greater than the warning activation threshold. 

Figure 66: Evolution of normal acceleration recorded at the time of activation of the stall warning
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This modification of the behaviour resulted in the appearance of a high frequency 
component of an amplitude increasing to up to about 0.1 g peak-to-peak, and with 
a signature that is very different from a turbulence signature of aerological origin. 
Furthermore, there is a noise on track 1 of the CVR, at about 2 h 10 min 55, which may 
be the impact of the microphone striking a panel, heard at a stable frequency.

Note: According to the simulation of the aircraft movements, at this time the turbulence observed 
in the first seconds of climb had stopped.

Additional analyses were conducted with Airbus to determine if this phenomenon 
could correspond to buffet. The identification of this phenomenon is complicated by 
the fact that the concept of buffet is defined as accelerations at the level of the pilots’ 
seats and not at the centre of gravity. 

Airbus subsequently flew special flights to collect more accurate data at high angles 
of attack and with an aircraft configuration close to that of the accident (mass, flight 
level, Mach, etc.). These tests made it possible to refine the preliminary correlations 
and to establish that the level of buffet was considered to be a deterrent by the test 
pilots when the angle of attack was about 10°, corresponding to normal acceleration 
amplitude of 1 g at the pilot’s seat. This angle of attack was reached at about 2 h 10 
min 57 s during the accident flight.

Thus, the stall warning was triggered at 2 h 10 min 51 at an angle of attack 
corresponding to the theoretical threshold for the measured Mach value. Two 
seconds later, vibrations that might correspond to buffet appeared. The intensity of 
vibration probably reached the deterrent buffet level at about 2 h 10 min 57 s.

1.16.5 Reconstruction of the information available to the crew

1.16.5.1 Analysis of the airspeed displayed on the PFD’s and ISIS

Analysis of the FDR data made it possible to determine, for each PFD, the time periods 
when the CAS was displayed as well as the corresponding ADR source. 

Figure 67: Speed displays on the PFD
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1.16.5.2 Evolution of CAS 2 

Knowledge of CAS 2 is required to:

 � Know the speed displayed on the right PFD when the AIR DATA selector is not  
positioned on “F/O ON 3”;

 � Calculate the position of the FD displayed on both PFD’s;
 � Calculate the speed trend displayed on both PFD’s.

Analysis of the data from the FMGEC, the ACARS messages and the FDR made it 
possible to partially determine the evolution of the CAS 2 during the flight.

Thus, it was possible to establish that the Pitot probe on the copilot’s side (F/O Pitot):

 � started to freeze at the earliest at 2 h 10 min 03.5 and at the latest at 2 h 10 min 
05. The CAS 2 was then more or less equal to CAS 1 and thus equal to the airspeed 
recorded by the FDR;

 � unfroze definitively at 2 h 10 min 46 at the latest. The CAS 2 was then more or less 
the same as CAS 1.

Between these two moments, the Pitot probe on the copilot’s side certainly unfroze, 
at least temporarily.

Two icing profiles were established, one in which the Pitot probe remained frozen for 
the longest period of time and the other for the shortest period of time. It was not 
possible to determine which of the two profiles was more likely. Consequently, the 
evolution of the CAS displayed on the right PFD is partially known for the period from 
2 h 10 min 3.5 to 2 h 10 min 46, as the following graph illustrates.

Figure 68: Evolution of the 3 CAS
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1.16.5.3 Calculation of the speed trend

The speed trend arrow represents an estimation of the acceleration of the aeroplane: 
the tip of the arrow indicates the airspeed that the aeroplane will be at 10 seconds 
later. Its value depends on the earlier evolution of the speed used for the calculation. 

In order to be free of this evolution in relation to CAS 2, the determination of the speed 
trend displayed by the right PFD was made from 2 h 10 min 46. In addition, from that 
moment, the CAS 1 and 2 can be considered as identical and valid. Some differences 
can exist between the speed trends displayed on the left and on the right at the 
time of the unfreezing of the CAS,2 due to the calculation mode (filtering). However, 
the sudden increase in the CAS 2 in any case caused a transitory phenomenon 
increasing the value of the speed trend for several seconds. It thus appeared that 
the speed trend indicated an acceleration that could be significant in the moments 
around the triggering of the stall warning. Subsequently, the speed trend indicated a 
deceleration up until the end of the period of recalculation at 2 h 11 min 40.

1.16.5.4 Calculation of the flight director orders 

The flight director orders were recalculated over all the time periods considered 
relevant. Depending on the engagement modes (identical right and left), the orders 
given by the right and left crossbars may have been different. In this case, it was 
established that orders presented on the right and left were either identical or 
extremely close. Given the engaged modes and the operation of these modes, and 
despite only partial knowledge of the development of CAS 2, it was possible to mark 
the position of the longitudinal DV. The accuracy is relatively good over certain time 
periods (min. and max. close), less good over a particular time period (knowledge of 
the max position only between 2 h 10 min 17 and 21 as well as between 2 h10 min 26 
and 36).

The sequence of appearance / disappearance of crossbars on the left and right PFD 
was as follows:

 

Time period LFD  RFD  Vertical mode Lateral mode 

before 2 h 10 min 08   ALT CRZ HDG 

2 h 10 min 08 - 17     

2 h 10 min 17 - 21   ALT CRZ * HDG 

2 h 10 min 21 - 26     

2 h 10 min 26 - 36   V/S +6000 HDG 

2 h 10 min 36 - 42     

2 h 10 min 42 - 43   V/S +1400 HDG 

2 h 10 min 43 - 47     

2 h 10 min 47 - 2 h 11 min 40   V/S +1400 HDG 

2 h 11 min 40 - 2 h 12 min 52     

2 h 12 min 52 - 2 h 12 min 58    V/S +1400 HDG 

2 h 12 min 58 - 2 h 13 min 57     

2 h 13 min 57 - 2 h 13 min 58   Not recorded- period of associated 
parameter sampling insufficient 

2 h 13 min 58 s - end of flight     
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The following graph represents the maximum and minimum positions of the FD 
crossbars displayed between the disconnection of the autopilot and 2 h 11 min 40, as 
well as the longitudinal inputs made by the copilot on his sidestick:

Figure 69: Evolution of FD crossbars

1.16.5.5 Analysis of the sequence of appearance of ECAM messages

The drop in the measured airspeed triggered monitoring within the various computers 
(refer to the analysis of the ACARS messages in interim reports 1 and 2), which in turn 
led to the loss of automatic systems and the appearance of ECAM messages. 
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Figure 70: Position of the area where ECAM messages are displayed

Seven lines are available on the ECAM for the display of messages. If the number 
of lines required to display all the messages exceeds this number, a green arrow 
pointing downwards appears to indicate that other messages of lower priority have 
not been displayed. To make them appear, the crew must process the first messages, 
then clear them. It is not possible to know if any of the crew members cleared one 
or more ECAM messages during the event, however, no announcement to this effect 
was made.

If the assumption is made that no message was cleared, and without taking into 
consideration the NAV TCAS FAULT message, the statuses of the ECAM at different 
times would have been as follows:

Figure 71: ECAM displays at different moments (if no message has been erased)
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1.16.5.6 Contribution from the analysis of the ACARS messages

Most of the maintenance messages analysed in the interim reports can be correlated 
with data extracted from the flight recorders. 

This correlation confirmed the preliminary analyses written up in the interim reports. 
Study of the transmission times between the computers that identified the triggering 
of the monitoring and the CMC also made it possible to explain and check the order 
in which the messages were sent by ACARS. This order may differ from the order of 
appearance of the ECAM messages.

It should however be noted that an error was made in the analysis of the “FLAG FPV 
ON PFD CAPT (F/O)” message. This had been explained by the combination of two 
conditions: that the TRK-FPA mode had been selected by the crew, and that the FPV 
was unavailable. In fact, the first of these conditions is not taken into consideration 
when sending the message to the CMC. The fact that the status of the FDR parameter, 
which indicates the transition from HDG-VS mode to TRK-FPA mode, did not change 
during the flight confirms that the crew did not at any time select TRK-FPA mode.

The end of the flight occurred shortly after the sending of the last maintenance 
message “Maintenance status ADR 2”, which confirms the reason for the absence 
of an associated fault message: the correlation window opened for a period of one 
minute could not close and the fault message was not sent.

1.16.5.7 Calculation of REC MAX and OPTI

A calculation simulation was performed of the REC MAX flight level by the FMS 
between 1 h 45 and 2 h 09 min 30. In order to ensure the representativeness of the 
calculation in relation to what could have been presented to the crew during the 
flight, the tropopause altitude that the crew had entered in the INIT A page of the 
FMS had to be known. Given the operational procedures in force at the time of the 
event, the default altitude proposed by the FMS (36,090 ft) was selected.

According the recorded FDR parameters (particularly temperature and mass), 
the simulation showed that the REC MAX varied little over the period in question, 
between FL 372 and FL 376. The difference in temperature compared to the standard 
atmosphere was quite stable at +11 °C, except between 1 h 51 and 1 h 59 when the 
difference was smaller and the minimum of +9 °C was reached. 

The REC MAX calculated at 1 h 45 was FL 372 and the general tendency to increase 
was around 100 ft per ton of lost mass (or about 9 minutes of flight). The reduction 
of temperature at 1 h 50 was expressed by a local maximum of REC MAX at FL 375. It 
then reduced to FL 374 at 2 h 00.

Note: at 1 h 52, the PF said to the Captain “you see the REC MAX has moved to three seventy-five”, 
which seemed to correlate to this extreme of recalculated REC MAX.
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Figure 72: Evolution of the REC MAX (simulation) Source Airbus

The optimal flight level (OPTI) was recalculated using the information from the flight 
plan and   the cost index used at Air France (80). This calculation indicated that the 
OPTI was about 37,000 ft flying over ORARO point, increasing in the same order of 
magnitude as the REC MAX.

1.16.6 Simulation of flight AF 447 in the Eurocat system

The BEA, working with Thales, the Eurocat system designer, organised a simulation of 
flight AF 447 connected in ADS-C with the DAKAR Oceanic ACC.

The purpose of this test was to determine if the triggering of the safeguard system 
installed in the system could have provided a more precise position of the aeroplane.

The following possibilities were postulated:

 � The flight plan was integrated in the Eurocat system in DAKAR;
 � AF 447 flight was connected in ADS-C.

The configuration of the system was that in force at the time of the accident. The 
following functions were triggered:

 � Position and altitude report every 896 seconds, about 15 minutes;
 � Position and altitude report during passage of the points flown over in the 

DAKAR Oceanic FIR. The report function also sent the estimates of FMS point n+1 
and n+2;

 � Warning during a change of altitude of ±200 ft;
 � Warning during a change of route of more than 10 NM;
 � Warning during the absence of a position report.

In the absence of a report message, the system signals it after 3 minutes. This lapse 
of time enables a connection problem or information transmission delay to be 
cleared up.
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The connection of flight AF 447 with DAKAR Oceanic in ADS-C would in this way have 
generated the following information:

 � Altitude change message (2 h 10);
 � Warning message of non respect of altitude (2 h 17);
 � Messages of non periodic position report and of passage of reporting point (2 h 20); 
 � Loss of ADS-C connection message.

In this context the DAKAR controller could have attempted to contact the crew of 
flight AF 447. 

The flight connection time associated to the position reports period (896 seconds) 
did not enable position information to be obtained after 2 h 10 min (position 
provided by ACARS in addition). Thus the current configuration system did not make 
it possible to restrict the wreckage search area. However, a critical phase could have 
been triggered earlier.

The ATLANTICO controller would have been warned of the altitude change by his 
system if flight AF 447 had been connected in ADS-C.

1.16.7 Aspects relating to fatigue

The professional timetable of the three crew members during the month that 
preceded the accident flight shows that the limitations on flight and duty times, as 
well as rest times, were in accordance with the provisions of European Regulation 
(EC) n°859/2008 of the European Commission (sub-section Q of Annex III).

The investigation was not able to determine exactly the activities of the flight crew 
members during the stopover in Rio, where the crew had arrived three days earlier. It 
was not possible to obtain data on their sleep during this stopover.

This lack of precise information on their activity during the stopover, in particular in 
relation to sleep, makes it impossible to evaluate the level of fatigue associated to 
the flight crew’s duty time.

The CVR recording does, however, make it possible to show that the crew showed no 
signs of objective fatigue, as the following elements indicate:

 � The level of activity and implication of the augmented crew in the first part of 
the flight, with the Captain and the copilot seated in the right seat, then in the 
second part of the flight with the two copilots, are in accordance with what is 
expected from a crew in the cruise phase. No signs of drowsiness or sleepiness 
are noticeable;

 � At 0 h 58 min 07, the Captain was concerned with the state of fatigue of the 
copilot in the right seat. («try maybe to sleep twenty  minutes when he comes 
back or before if you want ») who answered that he didn’t want to sleep;

 � Questioned on his return to the cockpit, the copilot who took the Captain’s place 
answered that he had “dozed”.
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1.16.8 Work on Human Factors

This accident, like any accident, signalled the failure of at least part of the provisions 
that were supposed to guarantee the safety of this flight in the situation encountered 
or in analogous situations. These provisions involve on a general level the certification 
of the aircraft systems design and its cockpit, principles of continuing airworthiness, 
rules of operational use and particularly normal, rescue and emergency procedures, 
and the behaviours and skills expected of the crews, and therefore especially their 
training and practice. This set of provisions includes among others explicit areas: 
regulatory provisions, procedures to follow, design features, operational limitations 
etc. which were designed to keep the flight safe. It also includes implicit areas that are 
more or less clear: “good practice”, “reasonable expectations” regarding behaviour, 
indeed even very implicit assumptions or suppositions about the behaviour of the 
various parties.

The aim of the analysis was to determine the sub-group of the provisions that affected 
the expected behaviours and skills of the crews for the situation encountered. This 
involved identifying the failures that occurred during the flight, in relation to the 
explicit or implicit expectations of the safety model. 

Beyond the simple discovery of a psychologically probable, likely or plausible 
explanation of the behaviours recorded, this involved assessing the degree of 
specificity or generality of the behavioural responses recorded: are they specific 
to this particular crew, shared by all the airline’s crews, or can they be generalised 
to all crews?  With regard to human factors, the behaviour observed at the time of 
an event is often consistent with, or an extension of, a specific culture and work 
organisation. The traits of the crew’s habitual operation may be perceived in the 
elements collected during the investigation, and particularly in all that the CVR may 
reveal before the critical phase. To put it another way, it involved answering the 
question: “if another crew were substituted for this one, would the same responses 
be obtained (probably, probably not; certainly, certainly not)?” The final aim was in 
fact to contribute to identifying what should be modified in the whole of the safety 
provisions to significantly increase their effectiveness in a similar situation or in a 
generic situation including the same fundamental characteristics. However, the type 
of modifications to be made depends partly on the answer to the previous question. 

Thus, using the work of the other investigation working groups, the work of the 
Human Factors group served as the basis to draw up the accident scenario as detailed 
in part 2.1 of this report.

1.16.8.1 Management of a sudden anomaly and implications on human performance

In some cases, maintaining flight safety after the appearance of an anomaly (or even 
the acceptability of an anomaly) supposes appropriate crew intervention. First of all, 
it is expected that the crew ensures control of the aeroplane and follows the flight 
path. 

The intention is then that the crew will detect the anomaly, that they will possibly 
“make sense” of this detection, that they will modify their priorities on tasks in 
progress, and that they will take the corresponding action, (control inputs and/or 
acting on processing malfunctions, associated with procedures or check-lists), all 
of this in the expected timeframe (whose order of magnitude is indicated in the 
certification logic if it is critical).
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On the A330, the ECAM proposes actions to be carried out in the majority of failure or 
emergency cases. From the information available on the ECAM, the crew must analyse 
and   confirm the type of failure before undertaking any failure processing action. 
In other cases, the “adequate reaction” expected of the crew supposes immediate 
memory items with the purpose of stabilising the situation, then recourse to action 
instructions available on the ECAM, and/or recourse to procedures explained in the 
QRH and classified by category of diagnosed anomaly.

In all cases, this includes a specific number of implications concerning human 
performance, which may be based on what can reasonably be expected of any human 
operator (for example noticing a clearly audible aural signal), or generic professional 
abilities normally present in the pilot community (“basic airmanship”), or even specific 
abilities which must be explicitly developed through a specific training course and /
or practice. 

In addition, these expected reactions result from various cognitive modes of activity. 
Human operators notice and act according to their mental representation of the 
situation, and not to the “real” situation. The probability and speed of detection 
of anomaly signals is connected to their “salience”, that is to say to their ability to 
destabilise and modify the representation of the situation in progress, all the while 
being situated possibly outside the frame of this representation (that is to say 
unexpected, surprising, absurd, even “unthinkable” in its context).  Depending on 
the frequency of the operator’s exposure to the anomaly during his training or in real 
operations, his response may be automatic, applying rules, or developed on the basis 
of in-depth knowledge. Automatic responses assume recognition of very specific 
stimuli, to which the reaction is associated without true interpretation. Applying 
rules assumes not only their knowledge, but also the recognition of their conditions 
of applicability, and therefore the correct identification plus a specific interpretation 
of the anomaly. The construction of a response by calling on experience assumes 
incorporation of the anomaly in the mental representation of the situation, which can 
go via its destruction/reconstruction, very wasteful in resources and time-consuming. 
In this way the correct perception of the situation by a crew, which enables the 
reliability and speed of diagnosis and decision to be improved, is linked not only to 
the way in which the situation is presented to this crew (interfaces, parameters) but 
also to their training and experience.

Based on the preceding, for a good chance that these expectations of the crew may 
be met, it is therefore necessary:

 � That the signs of the problem are sufficiently salient to bring the crew out of their 
preoccupations and priorities in the flight phase in progress, which may naturally 
be distant from strict monitoring of the parameter(s) involved in the anomaly; 

 � That these signs be credible and relevant;
 � That the available indications relating to the anomaly are very swiftly identifiable 

so that the possible immediate actions to perform from memory to stabilise the 
situation are triggered or that the identification of the applicable procedure is 
done correctly. In particular, it is important that the interfaces that usually carry 
anomaly information display, or at least allow, this initial diagnostic, given the 
minimum competence expected of a crew. Failing this, it is necessary to offset the 
lack of information supplied by the system which would enable the diagnostic to 
be reached by specific training;
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 � That the memory items are known and sufficiently rehearsed to become automatic 
reflexes associated only with awareness of the anomaly, without the need to 
construct a more developed understanding of the problem; 

 � That there are no signals or information available that suggest different actions or 
that incite the crew to prior reconstruction of their understanding the situation. 

1.16.8.2 Case of speed display anomalies

The philosophy for processing the anomaly is described in the “UNRELIABLE AIRSPEED 
INDICATION / ADR CHECK PROCEDURE” that is in Flight Manual (AFM) and transcribed 
in the Airbus FCOM and the Air France Operations Manual. 

Airbus

The FCOM procedure indicates that:

 � The crew identifies the loss of consistency in indicated airspeeds;
 � And if the safety of the flight is affected by the indicated speed anomaly, and until 

the aeroplane reaches the safety altitude or the aerodrome circuit altitude, the 
crew first performs the   Memory items  indicated in the “UNRELIABLE AIRSPEED 
INDICATION / ADR CHECK PROCEDURE” inset. The objective of these memory 
items is to maintain the aeroplane within a safe flight envelope and to stabilize 
the flight path  to allow time to find, in the QRH, the tables giving the more precise 
pitch attitude and thrust values to be used for the flight :

Figure 73: Source: Airbus FCOM supplied to Air France

 � Whether or not they applied the immediate actions, the crew follows the 
“UNRELIABLE AIRSPEED INDICATION / ADR CHECK PROCEDURE” procedure in 
order to :

 y initially ensure that the automatic systems (AP / FD / ATHR) are de-activated 
 y based on the procedure tables, adjust the pitch attitude and the thrust in order 
to maintain the aeroplane in level flight;
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Figure 74: Source FCOM Airbus

 y identify the ADR(s) affected.

Air France

Air France split the Airbus “UNRELIABLE AIRSPEED INDICATION / ADR CHECK 
PROCEDURE” procedure into two parts. In its Operations Manual, it  introduced:

 � An emergency manoeuvre called in French “IAS DOUTEUSE” in the “Procedures 
Anormales, Manœuvres d’urgence” chapter. The emergency manoeuvre(11) must 
be carried out using memory items by the crew when there is a doubt on the 
reliability of a speed indication and if the conduct of the flight is dangerously 
affected. It repeats the items from the inset in the Airbus  procedure:

Figure 75: Source TU Air France

(11)Immediate 
action undertaken 
from memory 
when the 
safety of the 
flight is directly 
compromised. 
It is repeated 
in the QRH for 
individual skills 
maintenance. 
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 � A non-ECAM urgency/emergency procedure, called in French, “VOL AVEC IAS 
DOUTEUSE / ADR CHECK PROCEDURE” that must be followed by the crew and if 
the conduct of the flight does not seem to be dangerously affected or when the 
flight path is stabilized after a previous emergency manoeuvre. This procedure 
reminds the crew firstly of the immediate actions in the emergency manœuvre. 
It then provides a table of the values for pitch attitude and thrust to select to 
ensure level flight. When the flight path is stabilized, the crew must then identify 
the ADR(s) affected by following the procedure. In case the crew does not apply 
the emergency manœuvre as they consider that the safety of the flight is not 
affected, the procedure does not remind them to de-activate the automatic 
systems. The Operations Manual details the rules for applying the procedure and 
mentions:

 y “If the erroneous speed or altitude information does not affect flight safety (flight 
path stabilized),

 y […]
 y If flight safety is affected: (all the speed indications are erroneous, or if the false 

speed indication cannot be clearly identified)…”

1.16.8.3 Response to aural warnings

Numerous studies have been conducted on insensitivity to aural warnings and they 
showed that the aggressive nature, rarity and unreliability of these warnings may 
lead operators to ignore these signals [1, 2]. In particular, in the event of a heavy 
workload, insensitivity to aural warnings may be caused by a conflict between these 
warnings and the cognitive tasks in progress. The ability to turn one’s attention 
to this information is very wasteful as this requires the use of cognitive resources 
already engaged on the current task. The performance of one of these tasks (solving 
the problem or taking the warning into account) or of both would be affected [3].

In addition, studies on the visual-auditory conflict show a natural tendency to favour 
visual to auditory perception when information that is contradictory and conflicting, 
or seen as such, of both senses is presented [4, 5, and 6]. Piloting, calling heavily on 
visual activity, could lead pilots to a type of auditory insensitivity to the appearance 
of aural warnings that are rare and in contradiction with cockpit information. 
A  recent study in electrophysiology on a piloting task seems to confirm that the 
appearance of such visual-auditory conflicts in a heavy workload situation translates 
into an attention selectivity mechanism that favours visual information and leads to 
disregarding critical aural warnings [7].

[1] Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, 
abuse. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39(2), 
230-253.
[2] Doll, T. J., Folds, D., & Leiker, L. A. (1984). Auditory information systems in military 
aircraft: Current configurations versus the state of the art. Final Report, 1 May-30 Sep. 
1983 Georgia Inst. of Tech., Atlanta. Systems Engineering Lab., 1.
[3] Wickens, C. D. (1980). The structure of attentional resources. Attention and 
performance VIII, 8.
[4] Colavita, F. B. (1974). Human sensory dominance. Attention, Perception, & 
Psychophysics, 16(2), 409-412.
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[5] Sinnett, S., Spence, C., & Soto-Faraco, S. (2007). Visual dominance and attention: the 
Colavita effect revisited. Percept Psychophys, 69(5), 673-686.
[6] Yuval-Greenberg, S., & Deouell, L. (2009). The dog’s meow: asymmetrical interaction 
in cross-modal object recognition. Experimental brain research. Experimentelle 
Hirnforschung. Expérimentation cérébrale, 193(4), 603.
[7] Scannella, S. (2011), Bases cérébrales du conflit visuo-auditif spatial et sémantique 
: études en IRM fonctionnelle et EEG. Chapitre “Etude du conflit visuo-auditif sémantique 
dans l’activité de pilotage”.

1.16.8.4 Statements by other crews faced with similar situations

A comparative analysis of reports and statements by other crews based on seventeen 
events that occurred in similar conditions to those of AF447, two of which are studies 
in 1.16.2, brought to light the following trends:

 � Analysis of the situation by crews appears difficult;
 � Calling on the « unreliable airspeed » procedure was rare;
 � Some crews mentioned the difficulty of choosing a procedure bearing in mind 

the situation (numerous warnings);
 � Others did not see the usefulness of applying this procedure given that in the 

absence of doubt about the unreliability of the airspeeds, their interpretation of 
the title of the “unreliable airspeed “ procedure did not lead them to apply it; 

 � Some gave priority to controlling the pitch attitude and thrust before doing 
anything else;

 � The triggering of the STALL warning was noticed. It was surprising and many 
crews tended to consider it as inconsistent.

1.16.9 Examination of the cockpit seats 

This paragraph details the examinations carried out on elements of the cockpit seats 
that were brought to the surface and identified.

1.16.9.1 Description of the cockpit seats

The cockpit has four seats: the Captain’s seat on the front left side, the co-pilot’s seat 
on the front right, as well as a third occupant’s seat, similar to the two pilot seats, and 
a fold-down seat for a fourth occupant.

      

                    Figure 76: View of the cockpit seats   Figure  77: General view of the left seat 
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Of the seats recovered, only the two pilot seats were examined in order to determine 
their position at the time of the event.

The two pilot seats are symmetrical in relation to the axis of the aeroplane. The main 
adjustments of the pilot seats are:

 � The horizontal position;
 � The vertical position or height;
 � The arm-rest position on the side-stick side;
 � The angle of the back of the seat.

The other adjustments (central armrest and lumbar cushions) are secondary.

When the horizontal position is being adjusted, the seat moves on its base via two 
systems:

 � A rack and pinion system enabling the translational movement of the seat;
 � A guidance system ensuring the seat is maintained facing the control panel.

For the rack and pinion system, the pinion and its electric motor are fixed to the base; 
the L-shaped rack is fixed under the seat cushion. The shape of this rack allows the 
longitudinal positioning movement of the seat and lateral movement when the seat 
is in its most aft position (position called storage position, allowing access to the 
seat). The longitudinal setting range is 226.6 ± 2 mm.

The guidance system is made up of two rails and two racks, located under the seat 
cushion, and of an 8-roller carriage set and two pinions, fixed to the base.

Adjustment of the horizontal position of the seat is usually electric. The motor can be 
disconnected for mechanical adjustment.

Figure 78: The seat’s horizontal position adjustment systems 

Adjustment of the vertical position is made via a worm screw system positioned in 
the base. The setting range is 165.1 ± 2 mm. This adjustment is usually electric. The 
motor can be disconnected for mechanical adjustment.

The armrest on the side-stick side has two adjustment knobs. The knob located at the 
front of the armrest allows the height to be adjusted. The second one located on the 
outer side of the armrest enables the angle to be adjusted.
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Figure 79: Right seat armrest on the side-stick side 

Adjusting the angle of the seat back is mechanical and is done using two locks fixed 
to the back of the seat. These locks consist of a threaded rod and a threaded nut on 
its semi-circumference. This specific tooling enables the nut to move the length of 
the rod and the position to be locked. These rods come out of the nut completely 
when the back of the seat is placed upright to its maximum (7° in relation to the 
vertical) and are completely drawn in when the back of the seat is tilted (34°).

The two seats have a five-point safety harness made of two shoulder straps, two lap 
belts (the buckle being fixed to the lap belt on the side-stick side), and a crotch strap 
(see the general view of the seat).

1.16.9.2 Examination of the left side seat 

The parts of the left seat that were examined were the seat (seat cushion and back) 
and the harness.

The marks left by the adjustment mechanism under the seat cushion enabled the 
horizontal position of the seat on impact to be determined: the seat was pushed back 
and moved to the left (in the “storage” position).

Figure 80: Roller marks on the guidance rail
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During examination, the threaded rods of the two tilt adjustment bolts of the back 
of the seat had partially come out asymmetrically. Additional examinations did not 
enable the positions deduced from observation of these bolts to be validated and 
consequently to deduce the tilt angle of the back of the seat. 

The shoulder straps and crotch strap were recovered unattached; the examinations 
confirmed that they were not fastened on impact. Only the lap belt was recovered 
fastened.

1.16.9.3 Examination of the right side seat

The parts of the right side seat that were examined were the seat (seat and back of 
the seat), the harness, the height adjustment mechanism, as well as the armrest on 
the side-stick side.

The marks left by the adjustment mechanism under the seat cushion enabled the 
horizontal position of the seat on impact to be determined. The seat was positioned 
5.5 cm from the most forward position.

        

                                Figure 81: Right side seat cushion Figure 82: Marks on the adjustment mechanism

The threaded rods of the two tilt adjustment bolts were recovered almost completely 
drawn in, asymmetrically. For the same reasons as those explained for the left side 
seat, the positions deduced from observation of these bolts were not validated.

The seat’s height adjustment mechanism was frozen at a height of 7.5 cm. The seat 
height may have been modified during impact. The height before impact may have 
been slightly higher (clutch slip).

The armrest was recovered in the up position, a probable consequence of the 
impact. The armrest position was indicated on the dial dedicated to this function. 
The needles were positioned on A values (adjustment from A to K for height) and 3 
(adjustment from 1 to 9 for tilt angle). The armrest cladding was dismantled in order 
to check mechanism integrity and validate the needle positions. The mechanisms 
were demonstrated to be irreversible during certification tests, that is to say that 
leaning on the armrest did not modify the adjustments made with the knobs. 
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Figure 83: Dial indicating armrest position 

The shoulder straps, the left lap belt and crotch belt were recovered detached. 
Examinations showed that on impact the left lap belt and crotch belt were locked 
and that the shoulder straps were not. 

Figure 84: Malformation of the crotch belt fastening 

1.16.9.4 Summary

The left side seat was in the “storage” position on impact. The pilot (PNF) was attached 
via the lap belt.

The right side seat was positioned 5.5 cm from the most forward position with a right 
side armrest bearing the indication of A3 adjustment. This adjustment is consistent 
with the piloting position of a pilot with the morphology of the PF. The pilot (PF) was 
attached via lap and crotch belts. 

1.17 Information on Organisations and Management

1.17.1 Organisation of Air France

The airline had, at the time of the accident, an AOC that had been issued on 8 July 
2008 and was valid until 8 July 2011.

Note: The previous AOC dated from September 2006 and was valid until 30 September 2009: it 
had been re-issued on 8 July 2008 as a result of adoption of the EU OPS. Its current AOC was issued 
on 1st July 2011 and is valid until 1 July 2014.
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1.17.1.1 Preparation and monitoring of flights 

1.17.1.1.1 Flight monitoring conducted by the operator

 h OCC (Operational Control Centre)

The OCC coordinates the entire programme of flights operated by Air France and its 
partners. It carries out all the following control tasks: changes to aircraft rotation, 
changes to crew rosters, time zone adjustments, flight cancellations, changes 
to an aircraft’s route, switching aircraft, putting on additional or special flights, 
renegotiating ATC slots, etc. Maintenance personnel working within the OCC provide 
the interface between the OCC and the hub’s maintenance centre (HMC). 

In case of a major event, the OCC activates the crisis centre.

 h ACARS position report for long-haul aircraft.

The basic principle is that real-time position information is received from the 
monitored aircraft and displayed using the Sailor system. All the position reports are 
displayed simultaneously on a screen at the OCC and are indicated to a dispatcher as 
a yellow aircraft. When the aircraft sends its position, it is displayed in green. If the 
aircraft’s flight path coincides with the path described in its flight plan then the two 
aircraft are overlaid. 

The actual positions are taken from the ACARS position reports for long-haul aircraft 
every ten minutes.

So that dispatch can monitor the “true” flight, the position report function must be 
installed on the aircraft system with the correct registration, and the crew must not 
have disabled this function. 

If the flight is monitored, the dispatcher will see an orange visual warning in the 
flight logging interface informing him/her that:

 � Three successive position reports have not been received;
 � The aircraft has deviated laterally from its scheduled route by more than 30 

nautical miles.

Figure 85: A typical display on a flight logging interface.
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 h HMC (hub maintenance centre)

The hub maintenance centre is responsible for the line maintenance of aircraft 
operated by Air France and its contract carriers at Paris Charles-de-Gaulle. Experts 
follow the frequency in order to provide technical assistance at the request of crews. 
They contribute to resolving technical problems in order to allow aeroplanes to be 
returned to operations in the shortest possible time via specific systems (ACARS).

 h Crisis centre

In the event of a major incident, the OCC’s duty manager decides, in consultation 
with the OCC’s 24-hour executive control function (COA) whether it is appropriate to 
activate the crisis centre (CC.AF). The CC.AF takes over the handling of the incident 
from the OCC, to ensure continuity of provision of this service. The CC.AF’s work 
is carried out by on-call personnel who gather in a room specially set-up for this 
purpose, within the OCC centre. The appropriate decisions are made, which may 
involve activating peripheral crisis structures.

1.17.1.1.2 Documents relating to operation on trans-Oceanic routes

In its Complément aux Routiers Espaces Océanique (Supplement to Charts for 
Oceanic Airspace), dated 18 December 2008, Air France reiterates the provisions 
stated in document AIRAC AIP SUPPLEMENT SUP A065-074/08 dated 25 September 
2008 regarding position report procedures and ADS-C logging-on procedures within 
the ATLANTICO FIR. This document states in particular: 

 � That position reports are mandatory at the waypoints designated on the 
fixed routes;

 � That position reports are mandatory at the other waypoints used to define the 
route in the FPL;

 � That the last position report prior to proceeding into a new FIR must also be 
sent to the organisation responsible for air traffic in the airspace into which the 
aircraft will proceed;

 � The availability of the ADS service;
 � The logging-on procedure required from the crews;
 � That reporting points are transmitted automatically by ADS-C.

Note: If the ADS-C connection fails, the crew must report that they have passed these waypoints 
via HF.

Note: The ORARO, SALPU and TASIL waypoints constitute mandatory position reporting points.

1.17.1.1.3 Documents relating to operations within the DAKAR Oceanic FIR 

The additional navigation and infrastructures information sheets included in the 
dossier for flight AF 447 state the following: 

Crews are authorised to participate in CPDLC tests within the DAKAR Oceanic FIR, AT THE 
REQUEST OF ATC. However, the instructions from air traffic control MUST be confirmed 
by radio. Implementation of ADS-CPDLC within DAKAR Oceanic FIR:
LOGON: GOOO.
Logon 20 minutes before entering DAKAR Oceanic FIR. 
Since this is a pre-operational deployment of the system, HF remains the primary means 
of communication.
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1.17.1.1.4 Preparation and monitoring of AF 447

 h Preparation of the flight by the central flight study service

Given the estimated load of 37.8 t, the flight dossier included a main flight plan at a 
standard Mach of M 0.82  with an ETF at Bordeaux Mérignac with alternate at Toulouse 
Blagnac as well as two additional direct flight plans, one at Mach 0.82 and the other 
at a “slower Mach”, i.e. M 0.81. A summary table of the loads offered enabled the crew 
to make the choice of the definitive flight plan from among these three options. 

 h Preparation of the flight at Rio de Janeiro

The Brazilian air traffic control service submitted the ATC flight plan to the air traffic 
control bodies of the regions overflown at 19 h 12.. 

The flight crew of flight AF 447 arrived at the flight preparation room at the airport 
at around 20 h 00. The flight departure agent handed over the flight dossier to the 
crew. There was no modification of the dossier. The PPV copy signed by the Captain 
confirmed planned trip fuel of 63.9 tonnes with refuelling at the ramp of 70.9 tonnes 
and planned taxiing of 0.5 tonnes (giving 70.4 tonnes on take-off).

The crew informed the Rio station of its choice of a direct flight at mach 0.82.

 h Meteorological data in the flight dossier

The meteorological charts were printed in black and white with the route plotted by 
computer. The following charts were handed over to the crew: 

 � The TEMSI chart valid on 1st June at 0 h 00 between FL 250 and FL 630;
 � The wind and temperature charts valid on 1st June at 0 h 00 at FL100, FL180, 

FL300, FL340 and FL390;
 � The CAT charts valid on 1st June at 0 h 00 at FL340 and FL390 (no clear air 

turbulence was forecast).

The SIGMET that may have been given to the crew were:

 � SIGMET 5 SBRE (RECIFE) of 31 May from 18 h 00 to 22 h 00;
 � SIGMET 7 SBAO (ATLANTICO) of 31 May from 18 h 00 to 22 h 00;
 � SIGMET 7 GOOO (DAKAR Oceanic) of 31 May from 16 h 35 to 20 h 35. The route of 

flight AF 447 did not enter into the area of this SIGMET.

Note: The regulations do not make archiving of the SIGMET’s in flight dossiers mandatory.

The crew also had the option of using a computer application (EOLE) to consult a 
colour screen and print in black and white other meteorological charts (particularly 
the tropopause and icing chart) and satellite photos. The investigation did not make 
it possible to say if they used these two possibilities.

 h Flight monitoring

The following operational information was exchanged via ACARS:  

 � At 22 h 51 the crew asked for and received the METAR of the Brazilian aerodromes 
of Belo Horizonte, Salvador de Bahia and Recife,
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 � At 0 h 31 dispatch sent the following message:
 y BONJOUR AF 447
 y METEO EN ROUTE SAILOR : 
 y PHOTO SAT DE 0000Z : CONVECTION ITCZ SALPU/TASIL 
 y PREVI CAT : NIL 
 y SLTS DISPATCH;

 � At 0 h 33 the crew asked for and received the METAR and TAF for Paris Charles de 
Gaulle, San Salvador and Sal Amilcar airports;

 � At 0 h 57 the crew inquired about the use of the second ETOPS backup aerodrome 
and dispatch replied at 1 h 02;

 � At 1 h 13 the crew asked for and received the DAKAR, Nouakchott and Natal 
METAR and TAF;

 � The regulatory bilateral contact before entering an ETOPS zone (SALPU, estimated 
at 1 h 48 by the crew) took place between 1 h 17 and 1 h 19.  

Note: The crew could take the option of requesting SIGMET via ACARS. This function was not used 
by the crew. 

1.17.1.2 Composition of the flight crew 

The airline company agreements set the flight time limitations and rest periods within 
Air France according to requirements that are more restrictive than the regulations 
in force. 

Within this framework, the maximum flying duty time is set at ten hours. This flying 
duty time can be extended to sixteen and a half hours by augmenting the crew. The 
flight time can then be extended to thirteen and a half hours. 

Since the programmed flying duty time of flight AF 447 was 12 h 45, the flight crew 
was augmented and increased to three pilots (one Captain and two co-pilots).

1.17.1.2.1 Flight crew members rest on board

On Airbus A330-203 type aircraft operated by Air France, a rest facility intended for 
the flight crew is installed behind the cockpit. It includes two bunks.

The augmented crew members are present in the cockpit and actively monitor the 
flight from the departure briefing to FL200 and from the arrival briefing to the gate.

Outside of these flight phases, each member of the flight crew must be able to rest 
for at least an hour and a half continuously during the flight duty time. 

The Captain sets the procedures for each member of the crew taking their rest. 

1.17.1.2.2 Relief of the Captain 

 h Authority of the Captain 

Air France’s operations manual attributes to the Captain the command role which 
includes taking all the decisions necessary to complete his or her mission. The Captain 
is responsible for all aspects of flight conduct and must intervene whenever he or she 
considers it necessary.
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 h In-flight relief of Captain

The regulations(12) state that the Captain may delegate flight responsibility to 
a Captain or, for operations performed above FL200, to another pilot. The latter must:

 � Hold a valid airline pilot’s licence;
 � Have passed an adaptation course and operator’s check (including the aircraft 

type rating);
 � Have currency in all the specified recurrent training and periodic checks;
 � Hold the specified route qualification.

In the Air France operations manual, the Captain’s replacement was a co-pilot 
designated as relief pilot. Acting in this capacity, he made the necessary operational 
decisions for the flight in accordance with the Captain’s instructions. He stayed in 
the right seat and from this seat carried out the PF function. He performed tasks 
marked “C” in the check-lists and emergency procedures.

The Captain is responsible, from the flight preparation phase onwards, for distributing 
the tasks to each crew member and for defining the possible scope of intervention of 
the relief pilot(s) during the flight when the basic crew is at the controls. 

Before any prolonged absence, the Captain:

 � Designates his or her replacement in compliance with part A of the operations 
manual;

 � Confirms the new task-sharing;
 � Specifies to the pilots the conditions requiring his or her return to the cockpit.

Note: The investigation has not made it possible to determine any task-sharing by the Captain at 
the time of flight preparation.

Note: The crew’s licenses and ratings are not included in flight dossiers.

1.17.1.2.3 Specific briefings for flights with augmented flight crew

According to the Air France operations manual, before the Captain takes a rest period. 
a briefing must be given and the following points mentioned: 

 � Route: monitoring and resources used. ATC clearances and contact frequencies;
 � Aircraft: technical status. Review of the fuel consumption, remaining fuel and 

configuration of the fuel system;
 � Meteorology: relevant information about the journey.

1.17.1.3 Operational instructions 

1.17.1.3.1 Definitions

 h By the operator

 � Emergency manoeuvre: an immediate action performed from memory when 
the safety of the flight is directly compromised. It is noted in the QRH for the 
maintenance of individual skills currency.

The content and the task-sharing of an emergency manoeuvre must be known by 
heart by all flight crew.

(12)European 
Commission 
Regulation 
N° 859/2008 of 
20 August 2008, 
called EU-OPS 
appendix 1 to 
OPS 1.940.
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 � Emergency procedure: action performed from a do-list when the safety of the 
flight is directly compromised: 

 y Dangerous configuration or at the limit of the flight envelope,
 y Failure of a system that impairs flight safety;

 � Backup procedure: action performed from a do-list when the safety of the flight 
is not directly compromised: 

 y Failure of a system that has no immediate consequence on the safety of the 
flight,

 y Failure causing the loss of redundancy or degradation of a system;
 � Additional abnormal procedure: abnormal procedure linked to a degradation of 

an aeroplane system that does not require the application of an emergency or 
backup procedure. 

Note: The standard handling of an abnormal additional procedure is as follows: complete readout 
by the PNF of the procedure then performance of the procedure from a do-list with cross-checking.

 � Action-check: when the pilot takes action on a system or on a control in the 
cockpit, s/he must do so in the form of a two-step process:

 y Action: the pilot makes a control input,
 y Check: the pilot ensures that the result of this input complies with his/her initial 
intention.

 � Cross-check: pilots must work as a team and cross-check each other’s actions to 
ensure optimum flight safety. This cross-checking applies to all tasks: flight path 
handling, system implementation, communications with ATC, etc. Any deviation 
from the planned flight profile or from standard procedures must be clearly 
called out.

 � Technical call-outs: the use of technical callouts formalises exchanges and 
facilitates communication within the cockpit, particularly during phases in which 
there is a high workload. Technical callouts are used to give a command, initiate 
an action or inform the other flight deck crew, particularly of a failure, anomaly 
or deviation.

 h By the manufacturer

 � Memory item: the following procedures are to be applied without referring to 
paper.

 � Abnormal or emergency procedures: maintain adequate safety and help to ensure 
the conduct of the flight. The flight crew uses the “READ and DO” oral reading 
principle when performing these procedures.

 � Supplementary Techniques: some normal procedures, which are not routine will 
be found in the SUPPLEMENTARY TECHNIQUES CHAPTER (3.04).

1.17.1.3.2 Method for processing failures and for task-sharing 

 h By the operator

Any flight crew member who notes any failure, whether established or developing, 
must immediately inform the rest of the crew.

The Captain must, before taking any other action, secure the aircraft’s flight path and 
define the task-sharing.
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The failure must then be handled according to the following sequence:

 � Confirmation of the type of failure;
 � Application of the check-lists or abnormal procedures and, possibly, re-initialisation 

of systems;
 � Technical, operational and commercial review;
 � Decision on continuing the flight;
 � Information to: ATC, cabin crew, airline (OCC, maintenance, etc), passengers.

Note: In its method for handling failures, the operator specifies that the Captain defines the 
task-sharing between the Captain and the copilot, and PF and PNF. The manufacturer however 
establishes a systematic sharing of tasks between the PF and PNF.

The sharing of tasks is detailed in the TU (Technique Utilisation – technical standards) 
manual), which stipulates that:

“Via the transmission of information messages and their perfect understanding, cross-
checking is an important factor in ensuring the safety of a flight. 
For a two-person flight crew, compliance with this principle is essential, especially when 
implementing urgent or emergency check-lists.
Consequently, any action that has an impact on the flight path or on the status of a 
system must be called out by the pilot who performs the action and be checked by the 
other pilot”.

The operator states that “During the processing of the failure, the PF is responsible for 
the piloting and navigation functions and monitors the implementation of the check-
list.” And that “The PNF goes through the check-list and monitors the flight path.”

The TU manual (technical standards) specifies that:

 � It is always the Captain, irrespective of whether s/he is PF or PNF, who calls for the 
performance of an emergency manoeuvre by calling out its title;

 � The Captain initiates the urgent and emergency check-lists;
 � The Captain quickly determines the flight path to follow, and which pilot is 

responsible for doing so, if this has not already been determined during a 
preliminary briefing;

 � Depending on the circumstances, the Captain may change the pilot flying status 
by calling out “I have the controls” or “Passing the controls over to you”;

 � If the co-pilot is unable to perform the role of PF, s/he calls out “Passing the 
controls over to you” and transfers the controls back to the Captain.

 h By the manufacturer

In the manufacturer’s FOBN entitled “Operating Philosophy”, section IV, the 
manufacturer states that modifications of Airbus’s SOPs by the operator may be 
coordinated with the manufacturer and that modifications usually require approval 
from the national authority. It specifies task-sharing based exclusively on the roles 
of PF and PNF.

The DSAC (France’s civil aviation safety directorate) did not comment on the 
differences between task-sharing indicated by the manufacturer and that indicated 
by the operator.
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1.17.1.4 Training at Air France

1.17.1.4.1 CRM training 

CRM is defined as the utilisation in the cockpit of all available resources: equipment, 
procedures and people, to ensure the safety and efficiency of flights.

Training in this field is governed by a regulatory framework: the directive of 
1st June  2006 (OPS 1.943, OPS 1.945, OPS 1. 955) accompanied by a guide and the 
recommended practices drawn up by the authority.

The aim of CRM is to develop effective cross-checking and support capabilities 
between the members of the crew. Crews are evaluated using four behavioural 
indicators: ability to cooperate, management and leadership, situational awareness, 
and decision-making.

In addition, the ability to cooperate, or work as a team requires that the Captain has 
effective management and leadership qualities.

Working as a team increases the crew’s ability to solve problems in degraded 
situations. The crew must use resources such as:

 � Communication, monitoring and information retrieval skills;
 � Technical expertise;
 � A willingness to succeed.

Certain organisational or personal factors could adversely affect the operator’s CRM 
performance: 

 � Company culture;
 � The belief that the crew’s actions and decisions are correct, even though they 

deviate from the standards;
 � Effects of fatigue and the lack of corrective measures to address the issue and to 

restore vigilance levels, or
 � A certain reticence to accept that CRM issues can play a key role in the occurrence 

of accidents.

Since 2005, the teaching of CRM at Air France has been subject to change. The airline 
wanted to integrate more pragmatic concepts (feedback from flight analysis) with 
the theoretical concepts. Thus, the contract with the original service provider was 
terminated in favour of the use of internal resources. 

The human factors division, in close association with the flight analysis division takes 
care of instructor training. The type of communication has evolved from a “top-down” 
style to an “interactive” style that encourages input from flight crew.

The human factors  division coordinates the work of about 500 instructors (TRI/TRE, 
including approximately 80 human factors  trainers: 20 flight crew/60 cabin crew). It 
ensures that their skill levels are maintained (1 day per year).

Human factors  trainers are selected, then follow a suitable training programme. TRI 
are trained in how to observe and record the main aspects of CRM. 
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 h CRM training for crews

Flight crew attend CRM training at different stages in their careers:

 � Initial training at Air France

Following their induction into Air France, flight crew attend an initial two-day course: 
the first day coinciding with type rating, then a second day 6 months after the end of 
line training. A significant portion of the second day is dedicated to feedback from 
experience gained from 6 months of line flying. This training covers all of the themes 
required by the regulations.

 � Recurrent training at Air France

The key regulatory elements are taught over a three-year cycle.

Recurrent training is done via ground training (S2) and training on simulators. Every 
year, one half-day of lessons in the flight division, includes common CRM for flight 
crew and cabin crew and CRM just for flight crew.

During ECP (recurrent training on simulators) twice a year, various CRM themes are 
covered during the simulator sessions. Non-technical skills (NOTECHS) are evaluated 
in practical situations.

In parallel, flight crew attend a “company training” course, which complements 
the regulatory training: modules L0 to L6 (with modules L2 and L3 dedicated to 
preparation for the Captain module), then a leadership optimisation course (SOC) 
about two years after starting work as a Captain. At the time of the incident, company 
training was overseen by the head of the human factors  division. 

Poor CRM performance by a crew that does not lead to a major technical or operational 
problem, does not, according to the regulations, lead to a trainee being failed.

There is no regulatory CRM training specific to two co-pilots to prepare them for the 
role of relief Captain.

 h Summary of CRM training courses followed by the crew of AF 447

The training followed by the crew was standard:

Flight crew Ground training Simulator training Company 
training

Captain

 y Initial CRM è 1998  
 y CRM “AF-Air Inter”

    merger
 y ECP “S2” days

Human factors  
briefings (ECP 
sessions Exx)

CP A
(left seat)

 y Initial CRM è 1998  
 y ECP “S2” days

Human factors  
briefings (ECP 
sessions Exx)

AL
L0
L1

CP B
(right seat)

 y Initial CRM è 2004  “v3”
 y ECP “S2” days

Human factors  
briefings (ECP 
sessions Exx)

AL
L0
L1
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1.17.1.4.2 Training in the “IAS douteuse” emergency manoeuvre and “ADR check” procedure

European regulation (EC) n°859/2008 of 20 August 2008 (EU-OPS 1) requires that 
operators should provide annual training for their crews. This training, consisting 
of briefings and exercises on a simulator, will include the regulatory exercises and 
supplementary exercises at the airline’s discretion.

Accordingly, Air France had introduced into its 2008/2009 training programme a 
briefing on airspeed indication anomalies for all flight phases, accompanied by an 
exercise on a simulator, in climb shortly after take-off. 

Note: the «  Vol avec IAS Douteuse” exercise took place during the takeoff from Rio. Some Air 
France pilots stated that during this exercise, no ECAM warning was generated because the ADR’s 
supplied the same erroneous information. The objective of this exercise was to undertake the 
emergency manœuvre with the thrust / pitch attitude parameters corresponding to the takeoff 
phase. The briefing for the exercise was based on:

 � The choice between the «  IAS douteuse  » emergency manoeuvre and the non ECAM 
check-list « Vol avec IAS Douteuse / ADR Check proc »,

 � The conditions for undertaking the emergency manoeuvre,
 � Human factors (highly stressful situation, PEQ coordination, in particular). 

The operator and the manufacturer indicated that this exercise scenario provided 
an opportunity to practice the emergency manoeuvre (see appendix 5) and to 
implement the pitch and thrust values for the climb, level flight and descent phases. 
Bearing in mind the practical impossibility of training for a procedure in all phases 
of flight, this scenario was chosen since it was considered to cover the most critical 
cases (near to the ground with changes of configuration). 

Note: In the Flight Crew Training Manual (FCTM) dated January 2005, the manufacturer describes 
the conditions under which airspeed anomalies occur and the QRH unreliable airspeed/ADR check 
procedure to be applied by crews that encounter such anomalies.

The Air France training module on the A330 for the instruction season that ran from 
1 April 2008 to 31 March 2009 included an « Vol avec IAS Douteuse” exercise. Extracts 
from the briefings booklet for the A330/A340 Recurrent Training are in appendix 7. 
The briefings booklet supplements the analytical instruction programme that 
describes the execution of the exercises and the checks conducted. It is handed out 
to the pilots on the training course to assist them with their preparation work. 

Note: In this briefings booklet, the introduction of the « Vol avec IAS Douteuse” theme mentions 
the loss of control that follows on from the crew’s failure to detect erroneous airspeed indications, 
on aircraft with traditional flight controls.

Furthermore, the booklet states that, on the Airbus A330, and other than in exceptional 
circumstances, a failure or erroneous information will be displayed by the ECAM and 
that the FMGEC computers reject the ADR that provides erroneous speeds/altitudes.

In the exceptional case where two erroneous speeds are not rejected, the flight 
control and guidance computers use the two incorrect ADR for their calculations. In 
this case, the crew must:

 � Apply the emergency manoeuvre if it considers that the conduct of the flight is 
dangerously affected (initial climb, pull up);

 � Apply the QRH «  Vol avec IAS Douteuse” procedure if the flight path has been 
stabilised and the conduct of the flight has been secured.
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This briefing booklet also draws up a list of points that might assist or affect the 
execution of the emergency manoeuvre, and in particular indicates: 

 � That the factors identified as aids are: the ground speeds, GPS altitude, radar 
altimeter height and STALL warning;

 � That, on the other hand, the following factors could cause confusion and generate 
stress: unreliability of the FPV and of the vertical speed if the altitude indications 
are affected, erroneous primary information with no associated message on the 
ECAM, the presence of alarms (false or proven, e.g. overspeed);

 � That the key points essential for correct management of the situation are: 
detecting the anomalies, interpreting the alarms and a coordinated approach to 
handling the situation.

The scenario selected for the simulator exercise required the crew to perform the 
component items of the emergency manoeuvre in a context in which the aircraft 
remained in normal law and no alarm was triggered.

Based on the information provided by the operator, the pilots of F-GZCP performed 
this training session on the following dates:

 � Captain: A330 training on 12 March 2008;
 � Copilot in left seat: A330 training on 6 December 2008;
 � Copilot in right seat: A330 training on 2 February 2009.

It has not been possible to identify any other training in « Vol avec IAS Douteuse” on 
an A330 or A340 simulator performed by the flight crew.

Note: The research carried out regarding pilot training identified an exercise entitled « Vol avec 
IAS Douteuse” performed in a simulator by the Captain during his A320 type rating training with 
Air Inter (refer to section 1.5).

1.17.1.5 Air France’s safety management process

1.17.1.5.1 Regulatory provisions

On 1st June  2009, the principal requirements that Air France had to meet in terms 
of managing flight safety were those set forth in (EC) regulation No. 859/2008 of 
20 August 2008 (EU-OPS1). In section 1.037, this regulation requires the introduction 
of an accident prevention and flight safety programme, involving, notably, an 
“incident reporting system” and a “flight data analysis programme”. The execution 
of this programme was monitored by the DGAC in the context of its oversight duties.

1.17.1.5.2 Organisation of safety management within Air France

An entity responsible for handling event reports exists within each Air France 
operational division, and notably within those relating to Air Operations and 
Maintenance. The work of these various entities is coordinated by a department 
whose level in the organisational hierarchy is the same as the executive board 
responsible for operations. 

Within the Air Operations division, Flight Safety Officers (OSV) relay safety information 
to the flight crew working in each sector (top-down distribution of information) and to 
the Accident Prevention and Flight Analysis department. In terms of their operational 
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duties, the OSV report to the accident prevention and flight safety department, and in 
respect of these duties are independent of the management hierarchy of the sectors 
in which they work.

Air France has set up a system for reporting information consisting of a number of 
different reporting pathways, with the main ones being: mandatory reports (ASR for 
flight crew), volunteered and anonymous reports, the systematic analysis of flight 
data and technical events occurring in flight.

Note: The systematic analysis of flight data involves examining the data recorded for various 
parameters selected by the operator and identifying any incidences of pre-determined thresholds 
being exceeded. At Air France, an internal protocol, agreed in 1974 with the professional bodies, 
defines how the results are analysed. One of the guarantees provided by this protocol is the 
particular conditions that must be satisfied before lifting anonymity and the impossibility of using 
flight data to monitor the performance of individual crew members.

Events considered as significant are raised during weekly meetings (RX2) attended 
by flight safety representatives responsible for handling event reports in each of the 
sectors. Depending on the issue identified, the way in which it is dealt with varies, 
and can include:

 � Short-term procedures that involve a single sector only. These procedures address 
events selected in meetings that require additional information and possibly a 
one-off action monitored within the sector identified;

 � Internal investigations conducted by a department and that may require a multi-
disciplinary approach. The investigation may be straightforward or in-depth, 
and its report may contain an analysis and recommendations for corrective 
and preventive actions. These investigations take between 1 and 3 months to 
complete.

Alternatively, each department may decide to adopt a particular approach to 
following-up the issue in order to collect information, determine the mid- to long-
term corrective actions (to address a common theme) and integrate any new events.

All active follow-up initiatives remain on the agenda of RX2 meetings and are 
discussed by the representative from the various sectors.

In addition to the corrective and preventive actions applied, e.g. changes to a 
procedure, equipment or to a training programme, the various initiatives implemented 
to address the events more systematically result in raising awareness or providing 
personnel with more information. To this end, several communication aids are used 
such as publications or presentations at training sessions. The departments primarily 
responsible for issuing these publications are Engineering, Accident Prevention and 
Flight Analysis.

1.17.1.5.3 Processing of incidents involving inconsistencies in indicated airspeeds

1.17.1.5.3.1 Detection and characterisation of the incidents

Between May 2008 and March 2009, for Air France’s A330/A340 fleet, nine incidents 
appeared in the ASR associated with unreliable indicated airspeeds: one in May 2008, 
one in July 2008, three in August 2008, one in September 2008, one in October 2008, 
and two in March 2009.
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All occurred in cruise between FL310 and FL380. In seven cases, the ASR mentioned 
the activation of the stall warning. Two of the nine Captains who submitted an ASR 
indicated in the “Suggestions” box, in the margin of their report, the potentially 
detrimental or destabilising nature of this failure, considered as multiple, notably 
because of the requirement to analyse and make sense of the situation encountered.

These incidents were raised during the RX2 meetings. The processing of the issues 
raised is described below. 

Note: After the accident, Air France carried out a focused analysis of the recorded flight parameters 
and identified six additional incidents which had not been raised in an ASR. The reports intended 
for maintenance (ATL) drawn up by the Captains to describe these incidents do not, or only 
partially, indicate the characteristic symptoms of the incidents associated with unreliable 
indicated airspeed.

1.17.1.5.3.2 Processing by the department responsible for maintaining aircraft

During this period, most of the actions relating to the problem of unreliable indicated 
airspeed were attributed to the division responsible for maintaining Airbus’s long-
haul aircraft. The nature of these actions was additional information about each of 
the events. This information was presented during a subsequent meeting.

Special monitoring was set up within this department to determine the corrective 
actions to be implemented. This monitoring was discussed during numerous 
exchanges with Airbus. A summary of these exchanges and of the actions concerned 
is presented below (a history of the probes is presented in section 1.18.1.7).

Note: Air France received its first A330s in December 2001. They were originally equipped with 
Thales C16195AA probes. Following the publication of the 2007 Service Bulletin, and in the 
absence of problems of this type affecting its long-haul fleet, Air France decided to replace the 
Pitot C16195AA probes, but only in the event of a failure, with Pitot C16195BA probes.

The first event involving a temporary loss of airspeed indication at high altitude 
occurred in May 2008.

Starting in July 2008, Air France reported these events to Airbus, in compliance 
with SIL 34-084 published by Airbus “Unreliable airspeed indication – Pitot probes 
maintenance action”.

On 24 September and 6 October 2008, Air France asked Airbus for information about 
the cause of these events and the solutions to implement, and also asked if the Thales 
C16195BA probe could resolve these problems. Airbus replied that the cause of the 
problem was probably probe obstruction by a rapid accumulation of ice crystals, and 
that the Thales C16195BA, developed to address the issue of water ingestion during 
heavy rainfall, was unlikely to improve the performance in an ice crystal environment. 
Airbus stated that there was no solution that could totally eliminate the risk of probe 
icing, that the three types of probe installed on the Airbus satisfy criteria that are 
much higher than the regulatory requirements for certification in relation to icing, 
and provided a reminder of the procedure to be applied in the event of an erroneous 
airspeed event.

From October 2008 onwards, Air France alerted Thales about the increasing problem 
of icing at high altitude. Thales started an internal procedure to perform a technical 
analysis of these incidents.
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On 24 November 2008, the issue of inconsistent airspeed indications was raised during a 
meeting between the technical divisions of Air France and Airbus. Air France requested 
an analysis of the root cause and a technical solution to resolve this problem, and 
suggested that BF Goodrich probes should be fitted, since their reliability appeared to 
be greater. Airbus confirmed its analysis and agreed to check the option of replacing 
the Thales probes with BF Goodrich probes. This point was followed by Air France and 
Airbus via the implementation of a “dashboard of indicators” approach.

At the end of March 2009, Air France experienced two further events involving the 
temporary loss of airspeed indication, including the first event on an A330.

On 3 April 2009, in light of these two new cases, Air France once again asked Airbus 
during a technical meeting to find a definitive solution.

On 15 April 2009, Airbus informed Air France of the results of a study conducted by 
Thales. Airbus stated that the icing phenomenon involving ice crystals was a new 
phenomenon that was not considered in the development of the Thales C16195BA 
probe, but that the latter appeared to offer significantly better performance in 
relation to unreliable airspeed indications at high altitude. Airbus offered Air France 
an “in-service evaluation” of the C16195BA standard to check the behaviour of the 
probe under actual conditions. 

Air France decided to extend this measure immediately to its entire A330/A340 long-
haul fleet, and to replace all the airspeed probes. An internal technical document 
was drawn up to introduce these changes on 27 April 2009. The modification work 
on the aircraft was scheduled to begin as soon as the parts were received. On 19 May 
2009, based on this decision, the monitoring of these incidents was considered as 
closed during the RX2 meeting. The first batch of Pitot C16195BA probes arrived at 
Air France on 26 May 2009, i.e. six days before F-GZCP crashed.  The first aircraft was 
modified on 30 May 2009.

At the time of the accident, F-GZCP was fitted with the original C16195AA probes.

1.17.1.5.3.3 Processing by the air operations departments 

The department responsible for drawing up the operational reference documents (NT) 
participated in the RX2 meetings and queried certain elements of the “unreliable 
indicated airspeed” procedure in relation to the circumstances of the incidents 
recorded. Airbus was asked to respond to these queries on 24 September 2008. 
Airbus confirmed its position by recommending that the «  Vol avec IAS Douteuse”  
procedure should be followed, but clarifying that the memory items should only be 
applied in situations in which safety is compromised, which was not the case in cruise.

Other operators were consulted by the NT department on 24 April 2009 on an Airbus 
forum reserved for operators. Prompt action from Airbus was requested. Airbus 
replied on 14 May 2009 during a conference dedicated to the points raised on this 
forum. They reiterated the causes and described the improvement offered by the 
Thales C16195BA probe. Furthermore, they provided a series of recommendations 
and associated references relating to the applicability of the unreliable indicated 
airspeed procedure, training (regarding the crew’s reaction at high altitude and the 
unreliable indicated airspeed procedure) and the avoidance of zones conducive to 
the ice crystals phenomenon. This presentation mentioned the on-going discussions 
focused on optimising the drafting of the procedure.
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The assessment of the impact of these incidents on operational safety, performed 
by the department responsible for accident prevention and flight safety during this 
period, was not documented in full or formalised. It was explained that:

 � Every anomalous airspeed was subject to analysis and monitoring (study of 
the crews’ reports, classification of the ASR, monitoring non-standard flight 
parameters by analysing recorded flight data) by the service responsible for 
accident prevention and flight safety. This analysis was shared with the other 
departments during the RX2 meeting;

 � This service undertook specific analysis of the recorded parameters recorded for 
certain incidents. This analysis was prompted on some occasions by a request from 
a crew that then had access to the parameters. A specific check was performed to 
ensure that there was no loss of control of the flight path;

Note: A summary document characterising the incidents identified by Air France and submitted 
to the BEA shortly after the accident reveals that the pitch attitude during these incidents varied 
from -3 to 7 degrees; and that the maximum angle of attack was 13 degrees.

 � The flight safety officer (OSV) for A330/A340, who reports to this department, 
interviewed most of the pilots who reported these incidents. The accounts given 
by these pilots did not suggest an immediate risk. The Head of the Division, the 
Head of the Technical Information Office and the Head of Professional Standards 
for the A330/340 division also interviewed certain crew members.

Based on this information, during the autumn of 2008, Air France considered that 
flight safety was not immediately affected by this type of incident.

The training programme for the 2008-2009 season included an exercise that required 
the «  Vol avec IAS Douteuse” procedure to be applied at take-off. Its integration 
in 2007 was prompted by the incidents caused by the ingestion of water on A320 
aircraft. The exercise was considered as representative of the main difficulties linked 
with its application during the various flight phases.

Four ASRs relating to these incidents were published during this period in several 
issues of the “Sûrvol” flight safety bulletin, circulated to all flight crew. 

On 6 November 2008, information about the anemometric anomalies that had 
occurred in cruise and that affected the A330/A340 fleet was circulated within Air 
France to the pilots working in the sector. The “info OSV” document indicated that six 
events of this type were reported in crew reports (see appendix 8). 

It states that the incidents are characterised by losses of anemometric indication, 
numerous ECAM messages and in some cases configuration alarms. The events 
occurred at high altitude in turbulence, in zones in which icing was forecast or 
observed, for aircraft flying at a Mach of 0.80 to 0.82 with autopilot and autothrust 
engaged. The chronology of the anomalies is described. It states that “during this 
phase, which lasted for approximately a few minutes, the crews did not report any 
feeling of overspeed (vibration, acceleration) or the approach to stall (pitch attitude, 
angle of attack, reference to the horizon) despite the activation of the stall warning”. 
Four general recommendations were circulated to crews. The “vol avec IAS douteuse” 
procedure and the conditions for its application were not repeated.
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1.17.1.5.4 Air France internal flight safety reports

A Flight Safety report was made in 2006 by an airline internal commission following 
incidents and accidents, in particular the Air France accident at Toronto in August 
2005. The commission studied events at the airline that had occurred between 1985 
and 2006. Notable elements from the report identified: 

 � During the period in question, two-thirds of the events occurred on long-haul 
flights;

 � The “situational awareness”, “decision-making” and “crew synergy” causal factors 
were inseparable and constituted by far the most significant contributing factor;

 � Piloting abilities of long-haul and/or ab initio pilots are sometimes weak;
 � A loss of common sense and general aeronautical knowledge were highly 

noticeable;
 � Weaknesses in terms of representation and awareness of the situation during 

system failures (reality, seriousness, induced effects).

In the observations and conclusions that the commission reached, it was noted:

 � In analyzing the main causal factors in serious events and fuel-related incidents, 
the commission observed that human factors (situational awareness, synergy, 
decision-making) were factors found in 8 out of 10 events, far ahead of those 
involving organisation, environment and technical factors), even if such factors 
should not be ignored as contributory;

 � Significant weaknesses in terms of training, real concrete appropriation and 
ability to evaluate, of these human factors, were observed in the flight crew 
population and indeed among all those whose actions and decisions had direct 
consequences on flight safety;

 � These weaknesses in relation to transverse functioning – synergy in CRM 
language  –  made it impossible for the company to have a clear and objective 
view of its performances in terms of aviation safety and propose concrete and 
appropriate solutions within a reasonable time period. 

Following this report, Air France put in place several measures, including:

 � creation of the risk prevention and quality assurance management;
 � Fundamental work on restructuring “Operational Procedures”;
 � Restructuring of the content of training courses;
 � Setting up of several working groups on human factors, specifically for type 

rating, ECP, training and recruitment of instructors, CRM training of pilots and 
line checks;

 � Evaluations of the professional levels of flight crew.

1.17.2 Organisation of oversight of the operator by the DGAC

1.17.2.1 The French Civil Aviation Safety Department (DSAC)

The DSAC-NO (Airworthiness and Operations division of France’s civil aviation safety 
directorate) is responsible for carrying out the continued oversight of Air France. 
This oversight ensures that the conditions are maintained for issue of the AOC, as 
described in Regulation 3922-91, known as EU-OPS.
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This obligation stems from the following documents that establish the legal 
framework for the execution of oversight operations: 

 � ICAO document Doc.8335: Manual of procedures for Operations Inspection, 
Certification and Continuing Surveillance – Chapter 9,

 � JAA Administrative and Guidance Material (JIP) – Part 2 OPS Procedures – Chapter 5.

The oversight work in the area of aviation operations(13) is primarily ensured by: 

 � Performing scheduled  checks covering the 12 technical domains(14) defined in 
the JIPs- over a 24-month cycle;

 � Performing unannounced checks in flight or on the ground (at the operator’s 
premises, during a stop-over, on an aircraft) The in-flight or simulator checks, 
whether programmed or unannounced, are undertaken by pilots from the PEPN 
or the OCV.

Each technical domain is checked by one or more specialists acting on behalf of an 
inspector with special responsibility for a given operator. The methods for checking 
these domains are defined by the DSAC in its Manuel du Contrôle Technique (MCT) 
(technical inspection manual) used by all the French regional oversight authorities 
(DSAC-IR). About 70 people are involved in this oversight activity within the DSAC 
and the Organisme du Contrôle en Vol (OCV) (flight control organisation).

DSAC-NO managers have stated that on average the oversight of Air France represents 
about 8,000 hours of work a year and requires the equivalent of 5 full-time inspectors, 
shared between 15 people, without counting in-flight checks.

The Pôle d’Expertise du Personnel Navigant (PEPN) (flight crew expertise centre) 
is responsible for carrying out the scheduled in-flight and simulator checks. The 
7 expert pilots employed by the PEPN conducted about 60 checks in 2009, of which 
5 at Air France.

All these checks performed by the DSAC relate to regulatory compliance. Consequently, 
the oversight activity is exclusively concerned with checking that the organisation set 
up by the operator complies with the regulatory requirements stated in the EU-OPS 
and by the FCL. 

Through in-flight checks, PEPN and the OCV conduct qualitative evaluations intended 
to identify, through observing the work of a crew, any safety-related deficiencies in 
the operator’s organisation. The PEPN managers stated that these evaluations must 
be analysed by the DSAC-NO in order to identify and notify any deviations from the 
regulations resulting from elements noted in the course of these checks.

Through checks on compliance with the regulations, the DSAC’s oversight work does 
not involve the systematic analysis of any differences that may exist between the 
procedures implemented by a manufacturer and by an operator.  However, in case of 
a significant difference whose justification does not seem obvious, the DSAC can ask 
the operator to justify the reasoning behind its choice. Oversight makes it possible to 
check that these procedures are properly documented in the operator’s Operations 
Manual. It does not constitute an analysis of the operator’s procedures, working 
methods, or training. 

(13)Outside of 
oversight of 
maintenance 
and training 
associated with 
pilots’ licences.
(14)Infrastructure, 
Manuals, Training, 
Crew records, 
Maintenance, 
Ramp Inspection, 
Equipment, 
Release of Flight/
Dispatch, Flight 
Inspection, 
Navigation 
(Ground) 
inspection, 
Dangerous 
Goods, Operator’s 
Quality System.
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Within the DSAC, the « State public transport safety programme » division of the « 
safety evaluation and improvement mission » (DSAC/MEAS:

 � Coordinates and checks the implementation of the State safety programme (PSE) 
for public transport, in liaison with the BEA and all of the services involved at the  
DGAC. To do this it analyzes the level of safety in public transport, defines and 
follows safety indicators;

 � Sets up an event reporting system and ensures follow-up of incidents, in particular 
through the  ECCAIRS database;

 � Puts in place periodic safety reviews  and implements the conclusions of these 
reviews; 

 � Pilots studies relating to the safety of public transport.

The safety evaluation and improvement mission (MEAS) receives around 7,000 ASR 
from Air France (+ 52 RX2). The content of the ASRs does not always make it possible 
to evaluate the seriousness of an event. Many are detected only by flight analysis 
after the event.

There are 106 French companies holding an AOC. In 2009, they made over 700,000 
flights, more than half of them being made by Air France.

1.17.2.2 In-flight inspection organisation (OCV)

This organisation acts as technical adviser to the  Director General of Civil Aviation to 
whom it reports directly. In addition, it undertakes the following missions:

 � It responds directly to requests from the DSAC;
 � It undertakes unscheduled checks, where necessary in coordination with the 

inspection missions decided on by DSAC/NO;
 � It can be required directly by the PEPN, in relation with the DSAC, to undertake 

checks in flight or simulator.

The OCV has 12 inspectors (all Captains) who share their time between the airline and 
the DSAC, thus the equivalent of about 6 full-time for the DGAC.

Following an inspection, the inspector writes a report that can give rise to comments. 
These comments must be analyzed by the DSAC in order to identify and notify any 
deviations from the regulations. 

In 2009, the OCV undertook 310 inspections including 88 at Air France on both the 
medium and long haul network. 

At the time of the accident, none of the in-flight checks had given rise to any 
notifications to Air France.

1.17.2.3 Inspection of DSAC standardisation by EASA

In September 2009, EASA undertook an inspection of the DSAC. It should be noted 
that this inspection was programmed in March 2009 in the context of an inspection 
schedule and was thus not linked to the AF 447 accident. However, this inspection 
was an accurate reflection of the situation of the oversight authority at the time of 
the accident.
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This inspection led to the notification of 7 comments relating to:

 � the role of the OCV whose unscheduled inspection activity was not fully integrated 
into the DSAC’s continued oversight system;

 � lack of initial and recurrent training for some in-flight and ground operations 
inspectors;

 � a lack of experience in the area of aviation operations for some inspectors, 
which could affect their judgement and their credibility vis-à-vis the operators’ 
personnel.

1.17.3 Air traffic services for a trans-oceanic flight 

ICAO document 4444 states in chapter 4 that air traffic services undertake control, 
information and alert services. Each ICAO Contracting State integrates this document 
into its regulations. 

1.17.3.1 Brazilian air traffic control organisations

The Brazilian air traffic control system (SISCECAB) comprises a central entity (DECEA) 
and air navigation service providers such as CINDACTA (integrated air defence and 
air traffic control centre), SRPV-SP (regional flight protection service) and INFRAERO.

On the day of the accident, the ATLANTICO ACC controller did not ask the crew of 
flight AF 447 to contact the controller of DAKAR Oceanic ACC five minutes before 
reaching the TASIL waypoint. The DAKAR Oceanic ACC controller did not contact the 
ATLANTICO ACC controller to inform him that no contact had been made with the 
crew of flight AF 447 three minutes after the estimated time at which it passed the 
TASIL waypoint.

Document AIRAC AIP SUPPLEMENT SUP A065-074/08, dated 25 September 2008, 
which came into force on 23 October, describes the deployment of ADS-C within the 
ATLANTICO FIR. This document does not mention the experimental nature of this 
deployment. It specifies that the position reports must be accomplished by voice 
communication on HF, when the ADS-C system is not available..

Flight AF 447 had not established an ADS contract. The CPDLC service was not in 
effect in the ATLANTICO FIR on the day of the accident.

1.17.3.2 Senegalese air traffic control organisations

Overseas flights are controlled in accordance with procedures. In the absence of a 
flight plan filed in the Eurocat system, coordination between the ATLANTICO and 
DAKAR Oceanic controllers allowed the latter to edit the strip chart shown below.

Figure 86: Strip created after coordination between ATLANTICO and DAKAR Océanic

This strip chart indicates the estimated times at which the aircraft would arrive 
in the FIR (TASIL 2h 20 min) and leave the FIR (POMAT 3h 45 min) based on the 
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aircraft’s speed. 

1.17.4 Search and Rescue (SAR)

The purpose of an SAR service is to search with maximum efficacy for persons in 
distress in peacetime and to rescue human lives on land and at sea.

Global SAR plans include:

 � The IMO’s SAR plan for the maritime domain;
 � ICAO Regional Air Navigation Plans (RANP) for the aeronautical domain. 

These global plans stem from the IMO’s SAR convention and from annex 12 of the 
convention on civil aviation. They constitute the basis for the deployment of national 
and regional plans, manuals, agreements and the associated SAR documents.

The Air Navigation Plans issued by ICAO indicate, for every region in the world, 
the boundaries of the various aeronautical SRR’s. These areas may be the same as 
the FIR of the Contracting States. For every SRR there is an air rescue coordination 
centre (ARCC).

The IMO’s SAR plan presents the world-wide arrangement of maritime SRR. Every SRR 
has at least one maritime search and rescue coordination centre (MRCC).

It should be noted that the boundaries of maritime SRR are often different from those 
of aeronautical SRR. 

Oceanic zones may be covered by an RCC associated with more than one State.

1.17.4.1 Documentary references

 h ICAO Annex 12: Search and Rescue

Annex 12 is exclusively concerned with search and rescue in the aeronautical domain. 
It applies to the establishment, maintenance and operation of search and rescues 
services by Contracting States in their territories and over the high seas, in addition 
to the coordination of these services between neighbouring States. 

Annex 12 is complemented by the international aeronautical and maritime search 
and rescue (IAMSAR) manual.

Annex 12 specifically states that: 

Contracting States shall, individually or in cooperation with other States, take all 
measures necessary to arrange for the establishment and prompt provision of search 
and rescue services to ensure that assistance is rendered to all persons in distress. 

Those portions of airspace located above the high seas or areas of undetermined 
sovereignty […] shall be determined on the basis of regional air navigation agreements.

Contracting States should  ensure the closest practicable coordination between the 
relevant aeronautical and maritime authorities to provide for the most effective and 
efficient search and rescue services.

Particularly, annex 12 recommends that: 

Contracting States should, in so far as practicable, develop search and rescue plans 
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and procedures to facilitate coordination of search and rescue operations with those of 
neighbouring States.

Contracting States should  establish joint rescue coordination centres to coordinate 
aeronautical and maritime search and rescue operations, where practical.

Any authority or any element of the search and rescue organization having reason to 
believe that an aircraft is in an emergency shall give immediately all available information 
to the rescue coordination centre concerned.

When information concerning an aircraft in an emergency situation is received from other 
sources than air traffic organisations, the rescue coordination centre shall determine 
to which emergency phase the situation corresponds and shall apply the procedures 
applicable to that phase.

In the event that an emergency phase is declared in respect of an aircraft whose position 
is unknown and which may be in one of two or more search and rescue regions, the rescue 
coordination centre that is notified of the existence of an emergency phase for which, as 
far as it is aware, no other centre has taken appropriate action, shall assume responsibility 
for initiating suitable action (i.e. the actions corresponding to the emergency phases) 
and shall confer with neighbouring rescue coordination centres with the objective of 
designating one rescue coordination centre to assume responsibility forthwith for the 
operations.

Unless otherwise decided by common agreement of the rescue coordination centres 
concerned, the rescue coordination centre that shall coordinate search and rescue action 
shall be the centre responsible for:

 � The region in which the aircraft last reported its position, or;
 � The region to which the aircraft was proceeding, when its last reported position was 

on the line separating two search and rescue regions, or;
 � The region to which the aircraft was destined if it was not equipped with suitable 

two-way radio communication or was not under obligation to maintain radio 
communication, or;

 � The region in which the distress site is located as identified by the Cospas-Sarsat 
system.

 h The IAMSAR (International Aeronautical and Maritime Search and Rescue) 
manual

The primary purpose of the IAMSAR manual is to assist States in meeting their own 
search and rescue needs and the obligations they accepted under the Convention 
on International Civil Aviation, the International Convention on Maritime Search 
and Rescue, and the International Convention for the Safety of Life at Sea (SOLAS). 
It provides guidelines for a common aviation and maritime approach to organising 
and providing SAR services. States are encouraged to develop and improve their SAR 
services, to cooperate with neighbouring States and to consider their SAR services to 
form part of a global SAR system.

 h ICAO Annex 11: Air Traffic Services

Annex 11 governs the application of air navigation services procedures. Chapter 5 is 
concerned with the alerting service and particularly describes its operation and the 
alerting of the relevant organisations (notably RCC and rescue operation centres).
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The alerting service is provided by air traffic control organisations. The actions they 
take depend on the urgency of the situation, as defined by the “alert phase”: 

 � Uncertainty phase, incerfa: this phase is notably established when no 
communication has been received from the crew within a period of 30 minutes 
after the time a communication should have been received;

 � Alert phase, alerfa: this phase is notably established following the uncertainty 
phase, when subsequent attempts to contact the crew or inquiries to other 
relevant sources have failed to reveal any information about the aircraft;

 � Distress phase, detresfa: this phase is notably established following the alert phase 
when further more widespread inquiries have failed to provide any information, 
or when the fuel on board is considered to be exhausted. This phase may also 
be established when information is received which indicates that the operating 
efficiency of the aircraft has been impaired to the extent that a forced landing is 
likely.

These phases are intended for the search and rescue services, which must take 
appropriate measures, and notify the air traffic control organisations involved with 
the flight. 

1.17.4.2 Implementation of SAR

Search and rescue operations are activated at the initiative of the SAR services 
(Annex 12) or after an emergency is declared by the air traffic services (Annex 11) or 
by a third party (Annex 12).

When the probable accident zone extends over both land and sea, each of the centres 
responsible for searching on land or at sea preserves its allocated responsibilities. 
However, to ensure that one body takes overall control of the operations, the head of 
the competent ARCC is in charge of the overall coordination of the operations. 

1.17.4.3 Case of an aircraft lost at sea

Air rescue coordination centres (ARCC) are responsible for the search and rescue 
operations prompted by an air accident. Whenever there is a possibility of an aircraft 
crash at sea in the SRR covered by an ARCC, the latter can mobilise the search and 
rescue resources usually dedicated within this zone to the competent MRCC. It is 
also possible to delegate to the MRCC the search operations for an aircraft that has 
crashed into the sea.

When the presumed accident zone extends over several search and rescue areas(15), 
the first RCC to receive notification of an emergency phase takes responsibility for 
coordinating with its neighbouring centres to identify the centre which will assume 
the responsibility for conducting and coordinating the search and rescue operations. 
By default it assumes this function.

(15)These zones 
may extend over 
several States.
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Note: Air-based search resources are frequently military resources. Their mobilisation may thus 
also involve military decision-making bodies.

1.17.4.4 SAR organisation in Brazil

The route envisaged in the flight plan for AF 447 passed through the FIRs adjacent 
to Recife ATLANTICO (Brazil) and DAKAR Oceanic (Senegal). Accordingly, Brazil and 
Senegal are considered as neighbouring States.

The Recife ATLANTICO FIR has an ARCC located at Recife and several MRCC, including 
one at Natal, and is competent for the zone in which AF 447 crashed. There is no JRCC 
in the Recife ATLANTICO FIR. ARCC and MRCC are managed by the Brazilian armed 
forces.

1.17.4.5 SAR organisation in Senegal

The DAKAR Oceanic FIR has an ARCC located in DAKAR, managed by the Senegalese 
armed forces.

For the purposes of their SAR operations, the Senegalese authorities operate a 
Bréguet Atlantique aircraft, provided by France in accordance with a protocol signed 
in 1966. This aircraft is equipped so that it can conduct search operations at night.

No regional SAR coordination plan exists between Brazil and Senegal. Consequently, 
there is no procedure for enquiring about the SAR resources available to each State.

1.17.4.6 SAR organisation in France

1.17.4.6.1 Aeronautical SAR 

Metropolitan France is divided into 4 SRR zones, each of which has its own ARCC.

Figure 87: Arrangement of the SRR in metropolitan France
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FIR BREST PARIS REIMS MARSEILLE BORDEAUX

SRR Associated ARCC:
CINQ-MARS-LA-PILE

Associated ARCC: 
DRACHENBRON

Associated ARCC: 
LYON MONT 

VERDUN

Associated ARCC: 
MONT DE MARSAN

The French civil aviation directorate (DGAC), responsible for the overall search and 
rescue policy for aircraft in distress, works closely with the French air force.

No single ARCC is formally designated as the contact point for non-French authorities.  
In practice, the Cinq-Mars-La-Pile ARCC responds to distress beacon transmissions 
detected by the Toulouse FMCC.

1.17.4.6.2 Maritime SAR 

There are five maritime SAR for which Metropolitan France is responsibility, with a 
regional operational centre for surveillance and rescue (CROSS) in charge of each 
area, which performs the role of an MRCC.

Gris Nez MRCC is designated as the SAR point of contact (SPOC) for non-French 
organisations, and in this capacity can answer any queries relating to the operational 
aspects of the maritime SARs. Gris Nez MRCC has also been designated as the point 
of contact for the Toulouse FMCC with regards to the detection of transmissions from 
distress beacons. 

Note: The roles of an SPOC include:
 � Assuming default coordination responsibilities,
 � Being the point of contact for SAR organisations.
 � Making national resources available for the benefit of the competent MRCC,
 � Being the point of contact for any French ship anywhere in the world, 
 � Setting up SAR coordination plan with its non-French counterparts.

1.17.4.6.3 Operational practices and staff training for ARCC and MRCC

1.17.4.6.3.1 ARCC

Practices

Senior staff at Aeronautical SAR centres in France informed the BEA that the ARCCs 
have only limited communication resources. They are generally equipped with: 

 � Contact details for adjacent ARCC and for all French ARCC and MRCC;
 � Contact details for adjacent air traffic control centres;
 � A PC connected to the Internet.

The French ARCCs are not equipped with an Admiralty List-type document (see 
below) for contacting an ARCC or MRCC anywhere in the world.  

Moreover, these senior staff members indicated that their zone of responsibility was 
restricted by regulations and that outside these zones they were not competent to 
send or coordinate resources.

Personnel training

ARCC personnel are military personnel from the French air force. Accordingly, their 
assignment to an ARCC is temporary. During their initial training, all trainees attend 
an initial one-week training course within the SAR service. 
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Before commencing their duties, the trainees attend a theoretical and practical 
training course provided by the air force.

The theoretical training comprises, for some trainees, a 15-day course at the ENAC 
(national civil aviation university) entitled “SAR service training”. It should however 
be noted that the number of places offered is limited, and that not all ARCC personnel 
are able to attend this course.

All personnel attend an initial three-week to 1-month theoretical training course 
within the ARCC to which they are assigned.  During this training, personnel study the 
reference documents, the procedures specific to their ARCC and receive instruction 
regarding the operation of air traffic control centres (CRNA), the Cospas-Sarsat centre 
and MRCC. 

The in-service training comprises a familiarisation period of about one month within 
the ARCC to which they are assigned, shadowing experienced members of personnel. 

A simulated SAR exercise is used to validate this training. 

1.17.4.6.3.2 MRCC

Practices

Note that France’s geography and its seafaring activity generates a sustained workload for 
the MRCC. 

So that it can coordinate with other MRCC in France and throughout the world, each 
centre can refer to a document called the Admiralty List. This document lists the 
contact details for all ARCC, MRCC and JRCC around the world. Moreover, it indicates, 
for each country, the reference RCC that acts as the SAR point of contact (SPOC) for 
foreign organisations.

This document, published by the United Kingdom Hydrographical Office (which 
transcribed the IMO document – circular SAR 8), is used once an emergency phase 
has been triggered to identify and contact the MRCC that coordinate the search 
operations.

Senior members of staff at MRCC have informed the BEA that any doubt regarding a 
potential emergency situation is investigated by implementing a dedicated process 
and by collecting information so that it can identify a suitable competent MRCC 
to coordinate the search. In this context, the MRCCs’ actions are not limited by a 
geographical zone.

Personnel training

MRCC officers are drawn from the French navy and from Maritime Affairs (a 
governmental department). They are employed as Rescue Mission Coordinators (CMS).

They attend a five-week theoretical training course (CMS module) at the Nantes 
maritime affairs college. This theoretical training is supplemented by:

 � In-service training lasting for about 1 month within the MRCC to which they are assigned
 � 15 days of training to obtain the General Operator’s Certificate (CGO). 

An internal assessment certifies the ability of the officer to perform the duties of a CMS.
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1.17.4.7 Audits conducted by ICAO

1.17.4.7.1 Final report on the safety oversight audit of the civil aviation system of France

An audit was conducted in France, in accordance with ICAO directives, from 3 to 
23 June 2008.

With regards to air navigation services, its findings were:

“Although the legal framework established by France in the field of national SAR 
services ensures that close coordination is provided between the competent 
aeronautical and maritime authorities for maximum efficacy in the conduct of SAR 
services, France has not established joint RCC to coordinate aeronautical and maritime 
SAR operations. Furthermore, France has signed letters of agreement with certain 
neighbouring States, including Spain, Italy, Germany and Belgium regarding the 
coordination of SAR services, however, the letters of agreement with the other States 
adjacent to metropolitan France and to its overseas departments and territories have 
not yet been drawn up and signed”.

1.17.4.7.2 Final report on the safety oversight audit of the civil aviation system of Senegal

An audit was conducted in Senegal, in accordance with ICAO directives, from 12 to 
14 June 2006.

With regards to air navigation services, the audit notably proposed that:

 � A JRCC should be set up to consolidate the activities of the ARCC and MRCC;
 � Cooperation agreements should be agreed with neighbouring States.

At the time of the accident, these recommendations had not been followed up.

1.18 Additional Information

1.18.1 Type Certification and continuing airworthiness

1.18.1.1 Regulatory aspects

The A330 meets the requirements of the regulations in force – that is to say JAR 25 
changes 13 or 14 and the special conditions imposed by DGAC – at the time the type 
certification application was made.

The equipment is developed in compliance with the regulatory requirements 
defined in JAR 25 part F and, in particular, paragraphs JAR 25.1301, 1309, 1323 (d)  
(e),1326, 1419 and in the corresponding ACJs (acceptable but not mandatory means 
of compliance).

These requirements indicate in particular how this equipment must be designed, 
installed and tested to verify it can ensure its function in all foreseeable operational 
conditions. 

Among other things, they state that:

 � The systems must be developed in such a way that failures that would prevent the 
flight from being pursued in complete safety are extremely unlikely. Compliance 
with this requirement must be demonstrated by means of analysis, and flight and 
ground tests, taking into account the possible failure modes, their probability as 
well as their consequences on the aircraft and its occupants;
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 � The systems and associated warnings must be developed while minimising the 
risks of crew error;

 � Means of information must be put in place in order to alert the crew of the 
occurrence of a failure and allow them to take the appropriate measures.

It is necessary to perform an analysis of the criticality of the failures and to associate 
it to a probability of occurrence (ACJ 25.1309).

This analysis is either undertaken systematically or when necessary by test crews 
during an aeroplane flight or on the simulator. It involves evaluating the associated 
work load for crew members in identifying the failure, searching for it and applying 
the appropriate procedure(s) and/or within the piloting task.

Some paragraphs of the basic regulation (JAR 25 / CS 25) can be modified or completed 
by special conditions, and this body of rules apply to an aeroplane that is functioning 
nominally. The cases of failures are covered in paragraph 25.1309.

For the Pitot probes, the regulations also require that:

 � They must be protected against humidity, dirt and other substances that could 
alter their function (JAR 25.1323 (d) );

 � They must be fitted with a heating system designed to prevent any malfunctioning 
due to icing (JAR 25.1323 (e) );

 � Appropriate means must be provided (visual warning directly visible to the crew) 
to inform the crew of any non-functioning of the heating system (JAR 25 1326);

 � They should be protected against the icing defined in appendix C of JAR 25 (see 
JAR 25 1419).

 h Appendix C of JAR 25 regulation

Appendix C of JAR 25 is the certification standard in super-cooled water icing 
conditions for validating the anti-icing protection systems on aircraft. The conditions 
are defined according to the altitude and temperature in terms of water concentration 
and of the droplets’ mean volume diameters.

Two icing envelopes are defined:

 � The “continuous maximum” envelope corresponding to an average cloud 17.4 
nautical miles long, with low water concentrations, rising up to 22,000 feet and 
with a temperature as low as - 30°C;

 � The “intermittent maximum” envelope corresponding to an average cloud 2.6 
nautical miles long, with high water concentrations, with values up to 30,000 ft 
and - 40 °C.

1.18.1.2 Notions of type certificate and airworthiness certificate

The certification principles require that a generic product (type of aircraft for 
example) must first of all be certified. When the product has successfully completed 
the certification process, a “type certificate” is issued by the authority to the company 
that designed the product. This certificate states that the generic product meets the 
applicable technical conditions in every aspect.

An individual airworthiness certificate is then issued for each product (aircraft for 
example) after it has been demonstrated that it conforms to the certified type.
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Among other things the holder of a type certificate is obliged to ensure the continuing 
airworthiness of its fleet.

At the time of the issuance of the first type certificate for the A330, the DGAC was the 
authority responsible for issuing certificates to Airbus. The certification principles, 
based on the JAR 21 regulations developed by the JAA were similar to those defined 
today in part 21. 

In particular, in accordance with JAR 21, the decree dated 18 June 1991 put in 
place a design approval procedure for the manufacturers of aeronautical products 
and determined the conditions that must be met by approved manufacturers. This 
approval – called DOA (Design Organization Approval) – obliges the manufacturer to 
give details of the working procedures that it will put in place to meet the requirements 
of JAR 21 or of part 21, in particular in relation to continuing airworthiness.

1.18.1.3 Continuing airworthiness

Continuing airworthiness rests in particular on the evaluation of the criticality of 
occurrences, classified during type certification according to four levels (in accordance 
with AMJ 25.1309): minor, major, critical and catastrophic. The certification regulations 
associate an acceptable probability to each of these levels.

Continuing airworthiness is in fact ensured both by the manufacturer and the 
certification authority according to the division of tasks and principles established in 
section A of Part 21.

1.18.1.3.1 Obligations of the manufacturer, holder of a type certificate 

Article 21 A.3 of Part 21 stipulates that:

1) the holder of a type certificate must have a system in place for collecting, examining 
and analysing the reports and information relative to failures, malfunctions, faults or 
any other events that has or could have harmful effects relative to maintaining the 
airworthiness of the product covered by the type certificate.

2) the holder of a type certificate must report to EASA all failures, malfunctions, 
defects or any other occurrences that it is aware of and that has led to or could lead 
to conditions that might compromise safety (unsafe conditions). These reports must 
reach EASA within 72 hours following identification of the unsafe condition. 

The following definition of “unsafe condition” is proposed in AMC 21 A 3b (b):
(a) An event may occur that would result in fatalities, usually with the loss of the aircraft, 
or reduce the capability of the aircraft or the ability of the crew to cope with adverse 
operating conditions to the extent that there would be:
(i) A large reduction in safety margins or functional capabilities, or
(ii) Physical distress or excessive workload such that the flight crew cannot be relied upon to
perform their tasks accurately or completely, or
(iii) Serious or fatal injury to one or more occupants
unless it is shown that the probability of such an event is within the limit defined by the 
applicable airworthiness requirements, or
(b) There is an unacceptable risk of serious or fatal injury to persons other than occupants, or
(c) Design features intended to minimise the effects of survivable accidents are not 
performing their intended function.
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The document states that certain occurrences of a repetitive nature may be considered 
to be “unsafe conditions“ if they are likely to lead to the consequences described above in 
certain operational conditions.
Note: Guidance material to 21 A 3b (b) provides a methodology and some examples to 
determine if an unsafe condition exists.

3) for any deficiency that may reveal a dangerous or catastrophic situation, the 
manufacturer must look for the cause of the deficiency, report the results of its 
investigations to EASA and inform it of any action that it undertakes or proposes to 
undertake to remedy this deficiency. 

1.18.1.3.2 Role of EASA.

When EASA considers that an “unsafe condition” has existed or exists and could 
occur on another aircraft, it can issue an Airworthiness Directive. In this case, the 
manufacturer must propose corrective action, in accordance with the provisions of 
paragraph 21A.3B that the Airworthiness directive makes mandatory.

An Airworthiness Directive is a document that imposes actions that must be taken 
on aircraft of the same type presenting certain common technical characteristics 
to restore them to an acceptable level of safety. It is drawn up jointly with the 
manufacturer.

1.18.1.3.3 Arrangements between Airbus and EASA

In September 2003, the responsibilities for continuing airworthiness were transferred 
from DGAC to EASA.

The regulatory provisions described above are detailed in documents internal to 
EASA and Airbus.

The procedures that apply to Airbus are described in an internal document covering 
continuing airworthiness and approved by EASA. This document was the subject of 
exchanges between DGAC and Airbus in 2002-2003 and was then implemented after 
the transfer of continuing airworthiness to EASA.

The procedures that apply to EASA are described in an internal document called 
“Continuing airworthiness of Type Design Procedure”, referenced C.P006-01.

1.18.1.3.4 Working methods

1.18.1.3.4.1 Initial processing of events

Airbus receives from airline operators the events that have occurred in service. An 
initial sort is performed to determine whether these events effectively correspond to 
the criteria for notification by operators to manufacturers, as laid down in the EASA 
AMC 20-8 document. These criteria are adapted to the Airbus fleet and validated 
by EASA. 

Events relating to airworthiness, called “occurrences”, are notified to the 
manufacturer’s continuing airworthiness unit. 
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1.18.1.3.4.2 Analysis of occurrences

These occurrences are then analysed in detail each week by a panel of Airbus 
specialists. 

One of the tasks of this review consists of undertaking, for each occurrence, a 
preliminary evaluation of the impact on airworthiness according to the following 
classification:

 � Occurrence with no consequences for airworthiness. These occurrences are 
closed quickly;

 � Occurrence that can lead to an unsafe condition. These occurrences are subject 
to processing and closure with EASA (see following paragraph);

 � The other occurrences are subject to in-depth analysis and must normally be 
covered by a risk assessment that allows either for the closure of the occurrence 
or proposes a plan of action for closure within a period of three months.

After each weekly meeting the list of occurrences that can lead to an unsafe condition 
is sent to EASA. In accordance with the provisions put in place between DGAC (then 
EASA) and Airbus, Airbus is authorised to close the other occurrences internally 
after analysis, identification of the problems and implementation of the corrective 
measures. 

These are issued by Airbus to operators in the form of simple information, reminders 
relative to procedures, operating or technical methods; or actions, modifications or 
inspections to be carried out. 

1.18.1.3.4.3 Processing of occurrences that may lead to an “unsafe condition”

General principle

These occurrences are processed by Airbus and then presented to EASA at the time 
of ARMs meetings (Airworthiness Review Meeting) or at the time of specific meetings 
or phone conferences for urgent matters.

If action is required to remedy an “unsafe condition”, EASA may at any moment 
decide to issue an Airworthiness Directive in coordination with the manufacturer. 

Initial processing by Airbus

The follow up of each open occurrence is presented by Airbus to EASA. This follow 
up includes the history of the occurrence, the safety analysis performed, planned 
corrective actions and the position of Airbus and EASA, in particular in relation the 
need to issue an Airworthiness Directive. This document is filled in regularly until 
closure of the occurrence.

Processing at the ARM meeting

Each occurrence is presented during these meetings which bring together the Airbus 
and EASA specialists in the area of airworthiness and safety. 

This meeting allows:

 � Airbus to present for each event the conclusions of its analysis and a corrective 
actions plan;
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 � EASA to examine the work presented by Airbus and, if necessary, strengthen the 
proposed action plan;

 � Airbus and EASA to reach agreement on the conclusions, the level of impact with 
respect to airworthiness and the corrective action plan to be implemented.

Where applicable, EASA may decide to issue an Airworthiness Directive. 

Note: Certain occurrences are presented to the ARM meeting that are not classified as likely to 
lead to “unsafe conditions” but for which, due to their recurrent or specific nature, it is decided to 
put special monitoring in place.

1.18.1.4 Oversight of Airbus, the manufacturer, by EASA

EASA organises the oversight of Airbus’ design agreement in such a way as to cover 
all of its areas of activity over a three-year cycle. Before the accident, the last audit 
relating to occurrences had been carried out in November 2007. EASA concluded 
that the overall organisation was satisfactory. 

1.18.1.5 Specific case of inconsistent indicated airspeeds

Cases of inconsistent indicated airspeed, characterised by a sudden reduction 
in airspeed values, were classified as major by Airbus in its safety analysis, which 
came from in-service experience. This classification is based on the principle of the 
existence of a training programme in the planned procedure for flight crew.

Between 1999 and 2001, prompted by several events reported on all types of Airbus 
aeroplanes and by simulator tests conducted by the CEV (national flight test centre) 
on behalf of the DGAC, the latter asked Airbus to make several changes leading to:

 � The modification of the existing procedure (creation of memory items);
 � The issuing of airworthiness directives on the inclusion of the unreliable speed 

indication procedure in the flight manual;
 � The replacement of some Pitot probes originally installed on the Airbus with more 

recent probes that meet the strengthened specifications developed by Airbus 
from 1995 (see paragraph 1.18.1.7).

Instruction in the procedure is now also included in the training programme 
delivered by Airbus. In October 2001, in view of the various changes made, this 
period of continuing airworthiness was temporarily considered as closed by the 
DGAC and Airbus.

In September 2003, the EASA officially commenced its duties as the authority 
responsibility for continuing airworthiness. Since the DGAC was initially the only 
organisation to have the necessary resources, some of its personnel continued to 
carry out  this role until November 2005 under the responsibility of EASA. When the 
dossiers for the A330 programme were formally transferred from the DGAC to the 
EASA in November 2005, the EASA was informed of a case of inconsistent indicated 
speed in cruise that occurred in 2003, which the DGAC was in the process of analysing.

Between February 2005 and March 2009, Airbus was informed by 10 operators of 
A330 and A340 aircraft of 16 incidents that had occurred in cruise, and that could 
be attributed, based on the data available, to a possible obstruction of at least two 
Pitot probes by water or ice. Nine of them occurred in 2008 and three at the start 
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of 2009. The manufacturer associated all these incidents with the failure condition 
manifested by a sudden reduction in several indicated speeds. Airbus’s analysis of 
each of these incidents, based on the data available, revealed that the stall warning 
triggered briefly on one or more occasions during six of these incidents. 

Note: The maximum angle of attack recorded during these six incidents was 4.5 degrees, which 
validated the activation of the stall warning. In three of these incidents, Airbus’s analysis linked 
the activation of the stall warning with a crew input on the flight controls.

The conclusion reached by Airbus for each of these 16 analysed incidents was 
that the systems had operated in accordance with their design. On this basis, the 
manufacturer maintained the classification of the failure condition as major. It 
confirmed the interim classification attributed during the initial evaluation of each 
incident. This classification does not require the manufacturer to notify the authority, 
as described in the approved procedure.

After the transfer of the dossiers in November 2005, EASA was not made aware of any 
other cases until 17 September 2008 for long-range aeroplanes (A330 and A340), at 
which date the DGAC forwarded to EASA a letter from the Director of the Air Caraïbes 
airline concerning two events where there was loss of speed indications on two of 
the airline’s A330s. The letter, in particular, said that he had taken the decision to 
replace the C16195AA Pitot probes with the C16195BA standard on the entire A330 
fleet in accordance with SB A330-34-3206, and asked DGAC for its position regarding 
this type of incident. 

DGAC forwarded this letter to EASA on 17 September 2008 asking it whether it was 
planning on making Service Bulletin SB A330-34-3206 mandatory by issuing an 
Airworthiness Directive.

On 16 October 2008, EASA asked Airbus to give a review of the situation concerning 
this problem at the ARM meeting to be held on 10 and 11 December 2008.

EASA answered by letter dated 18 November 2008 that an assessment of the risk 
associated with the speed inconsistency problems was currently being examined 
with Airbus and that it would inform DGAC of its conclusions. 

At the time of the December 2008 ARM meeting, the “Pitot icing” theme was on the 
agenda. Airbus presented 17 cases of temporary Pitot blocking that had occurred on 
the long-range fleet between 2003 and 2008, including 9 in 2008 without being able 
to explain this sudden increase. 

At this meeting, Airbus indicated that recent events had not provided any new 
information and that the fleet’s airworthiness was not affected. The manufacturer 
maintained its position and proposed that EASA keep a status recommended for the 
SB A330-34-3206 (Rev. n°01). This SB no longer mentioned the improvement provided 
by the C16195BA probes in icing conditions. It was decided to review the situation 
again at the next ARM meeting.

The situation was reviewed again at the ARM meeting held on 11 and 12 March 2009. 
No new cases of fluctuation or loss of speed were reported. As a follow up action 
EASA asked Airbus to make an annual review of problems of this type in order to 
monitor the evolution of the frequency of occurrence. The Service Bulletin SB A330-
34-3206 (Rev. n°01) was maintained as a recommendation.
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On 30 March 2009, EASA wrote to DGAC saying that a detailed review of the events 
for which icing of the Pitot probes was suspected had been carried out with Airbus, 
and according to this analysis:

 � The events reported in 2008 did not modify EASA’s position and these events’ 
classification remained “major”;

 � The increase in the number of these events recorded in 2008 could not be 
explained at that stage and Airbus had been asked to draw up an annual report 
to determine a trend;

 � In this letter EASA concluded that at this stage the situation did not mean that a 
change of Pitot probes on the A 330/340 fleet had to be made mandatory.

1.18.1.6 Pitot probe certification process

1.18.1.6.1 General

Based on these regulatory requirements and on its design objectives, the aircraft 
manufacturer draws up equipment technical specifications for the equipment 
manufacturers for each piece of aircraft equipment. For the Pitot probes, these 
specifications include the physical (shape, weight, resistance to shocks, etc.) and 
electrical characteristics, the degree of reliability sought along with the environmental 
conditions (behaviour in icing atmospheres, for example). The development of the 
probe by the equipment manufacturer consists of several phases:

 � Definition/design of the equipment;
 � Development of a prototype;
 � Tests in the laboratory and tests intended to qualify the product with respect to 

the required specifications;
 � Failure Modes, Effects and Criticality Analysis (FMECA). 

FMECA is an inductive approach – as exhaustive as possible – that consists of 
identifying the potential failure modes, their causes, effects and probability at the 
level of a system or of one of its subassemblies. 

The manufacturer systematically performs tests in the laboratory and in flight to verify 
that the Pitot probe behaves correctly in as real as possible an environment. The 
purpose of these tests is specifically to check the interfaces (electrical, mechanical, 
aerodynamic) between the Pitot probe and the other aircraft systems.

The certification authority can also, at its request, be associated with some of 
this work.

All these operations and the documents drawn up at the time of each development 
phase make up the certification dossier which is sent to the certification authority.

Note: The privileges associated to the manufacturer’s design agreement allow the authority to 
rely on the manufacturer’s internal processes for checking the justifications produced and thus 
not receive and examine the whole of the certification dossier.

One of the elements making up this certification dossier is a summary document: 
Declaration of Design and Performance (or DDP).
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This document certifies that the equipment meets the requirements of the certification 
regulations as well as of the specifications requested by the manufacturer and 
identifies the main substantiating documents.

When they have been manufactured, and before being put on the market, each 
probe produced is submitted to an in-depth quality inspection (physical appearance, 
inspection of the finish, resistance and performance tests, etc). 

1.18.1.6.2 Anti-icing certification of the probes

In order to cover all the super-cooled water icing conditions specified in appendix C 
of JAR  25, Airbus has developed a ten-point test table with different static air 
temperatures (SAT), speeds, total air temperatures (TAT), water concentrations per 
cubic metre of air, mean diameters of the water droplets, exposure time, Pitot heating 
electrical power supply and the probe’s local angles of attack in order to cover the 
aircraft’s flight envelope under the following conditions: 

 � All the tests are performed with reduced de-icing power (106 VAC instead of 
115 VAC);

 � The water concentration values are multiplied by an installation factor (1.5 or 
1.7 or 2 according to the speed chosen for the test) with respect to the values 
in appendix C of JAR 25 in order to take into account the effect of the probe’s 
installation on the aircraft (boundary layer effect). Airbus then applies an 
additional factor of 2 (design margin coefficient).

In addition to these points, whose aim is to meet the minimum regulatory requirements, 
Airbus specifies test points aiming to cover additional criteria defined by:

 � STPA specifications CIN3 n°42067 developed by Direction Générale de l’Armement 
(DGA);

 � A set of specifications developed by Airbus from 1995 onwards and designed 
to improve the behaviour of the Pitot probes in icing conditions including, in 
particular, ice crystals, mixed conditions (ice crystals plus super-cooled water) 
and rain conditions. The diameter of the ice crystals is set at hypothetical 1mm. 
These specifications include 10 tests in which the static air temperature (SAT), 
speed, water or ice crystal concentration per cubic metre of water, mean diameter 
of the water droplets, exposure time, the probe’s local angle of attack are varied.

The set of icing tests to be performed to meet the Airbus specification includes 26 
test points in all (10 for covering appendix C and 16 additional tests), thus covering a 
wider envelope than that defined by the JAR25 regulations. 

The Airbus specifications used for the certification of the probes are therefore stricter 
than those of JAR 25 (see appendix 9). 

1.18.1.6.3 Pitot probe compliance

Wind tunnel tests are performed by the equipment manufacturers (in this case Thales 
and Goodrich) to demonstrate the compliance of the probes with the specifications 
developed by Airbus. 
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There are many wind tunnels around the world in which this type of test can be 
performed. Each wind tunnel nevertheless has its limits and its own utilisation 
envelope in terms of speed, minimum temperature possible and water or ice 
crystal concentration. It may therefore not always be possible to perform some of 
the requested tests. Equivalence laws are then used to define similar conditions by 
varying the parameters in such a way that the amount of water or of ice crystals 
received by the probe is identical to what is stipulated for the test.

For example: a test must be performed at the speed of 190m/s with a water 
concentration of 6.3 g/m3. The wind tunnel is limited to a speed of 161 m/s. In this 
case the water concentration will be increased to 7.55g/m3 (190/161) x 6.3 = 7.55 
g/m3) and the temperature of the test will be increased in order to maintain a total 
temperature identical to the level of the probe. 

This similarity method is used internationally and is accepted by the certification 
authorities. 

Note: It is important to note that there are no wind tunnels capable of reproducing all the 
conditions that the crew may be confronted with in reality. 

Furthermore, some scientific studies are under way to characterise the exact 
composition of the cloud masses above 30,000 ft. They show in particular that not 
all the phenomena are known with sufficient precision. This is particularly true 
concerning the nature of ice crystals (size and density) as well as the dividing level of 
super-cooled water and ice crystals.

The Goodrich 0851HL, Thales C16195AA and Thales C16195BA probes were certified 
on Airbus A330 respectively in November 1996, April 1998 and April 2007 and meet 
all the requirements listed in § 1.18.6.2.2.

1.18.1.7 History of the Pitot probes on Airbus A330

The Airbus A330s were initially equipped with Goodrich 0851GR probes.

In August 2001, following fluctuations and/or losses of speed indication on A330 
reported by certain airlines, the French DGAC published Airworthiness Directive 2001-
354 (B) which made mandatory the replacement on A330 of the Goodrich 0851GR 
probes either with Goodrich type 0851HL or by Thales type C16195AA probes before 
31 December 2003. According to the analysis carried out at the time, the most likely 
cause of the problem was the presence of ice crystals and/or water in the Goodrich 
0851GR type Pitot probes within the upper limits of the original specifications, which 
did not include the additional specifications defined by Airbus from 1995.

In September 2007, following measured speed inconsistencies observed at the time 
of heavy precipitations or icing conditions on A320 and some cases on A330/340, 
Airbus published Service Bulletin SB A330-34-3206 (Rev. n°00) which recommended 
the replacement of C16195AA Pitot probes with the C16195BA standard. The Service 
Bulletin indicated that this model performed better in the case of water ingestion 
and of icing in severe conditions. 

Note: The C16195BA probe was initially developed in 2005 to answer problems relating to water 
ingestion observed on the A320 family during strong precipitation at low altitude.
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On 12 November 2008, SB A330-34-3206 was revised by Airbus (Rev.n°01). This 
Bulletin mentions the improvement that can be provided by the Thales C16195BA 
probe in relation to water ingestion and no longer mentions the improvement that 
the Thales C16195BA probe can provide in icing conditions.

In February 2009, Thales carried out a comparative study of the behaviour of the two 
C16195AA and C16195BA standards in icing conditions that were more extreme than 
required by the specifications. 

This study concluded that, in the icing conditions tested, the C16195BA standard 
performed better while saying, nevertheless, that for technical reasons it was not 
possible to reproduce in the wind tunnel all the conditions that may be encountered 
in reality.

1.18.1.8 Crew training associated with a type certificate

Current process

Section 3.3.6 of ACJ 25.1309 details how the crew’s action should be considered 
when evaluating the consequences of a failure condition. It states that training 
requirements must be specified in certain cases.

There are no approved materials or devices dedicated to crew training and exercises 
that are specific to a type certificate and that integrate the characteristics identified 
during certification or during continuing airworthiness.

The exercises performed for the purposes of type rating may be evaluated at the 
request of the manufacturer by the EASA via the OEB (Operations Evaluation Board). 
The evaluation may identify specific subjects that the exercises should address more 
thoroughly. The OEB’s recommendations may be used by the authorities responsible 
for approving training organisations as the basis for their approval decisions. The 
latest evaluation regarding the Airbus A330 was performed in 2004 by the JOEB (Joint 
Operations Evaluation Board, established by the JAA). This evaluation found that 
there was no requirement for specific training associated with the failure conditions.

The assumption made by the EASA with regards to the classification of the failure 
conditions is that the crew has the basic aircraft handling skills and has received, for 
the type of aircraft in question, the training necessary to apply the check-lists and the 
procedures described in the flight manual. The exercises likely to be conducted by 
an operator are not considered during the certification, even though they contribute 
towards improving the level of safety.

Note: during the evaluation of a procedure associated with a failure condition, EASA checks on 
the simulator, in a scenario defined by the manufacturer, if it is appropriate. Pilots introduce 
imprecision  into the performance of the procedure in order to evaluate its robustness.

Operational Suitability Data (OSD)

Since 2006, EASA has been working on developing a regulatory reference system 
implementing the OSD concept with the objective of associating it with the type 
certification of new aircraft. The main aim is to supply data to operators to define and 
improve the training of pilots, cabin crew, and maintenance personnel. It can also 
include specific conditions and/or limitations adapted to various types of operations. 



F-GZCP - 1st June 2009
147

The data itself will be compiled by the manufacturer and approved by the EASA for 
use in type certification. It is planned that operators and training organisations will 
apply the minimum mandatory provisions.

1.18.2 Information supplied to flight crews on the unreliable IAS situation

Information supplied by Airbus

The “unreliable speed indication” procedure (appendix 6) for the Airbus A330 appears 
in the FCOM and in the QRH supplied to operators.

In addition, the phenomenon is described in several documents that the manufacturer 
sends directly to the client airline’s air operations entity, or makes available to them 
via various media:

 � The Flight Crew Training Manual (FCTM) is presented as a supplement to the FCOM 
and provides crews with practical information about the operation of Airbus 
aircraft. The causes of inconsistent indicated speeds and their consequences on 
system operation are presented in the section of the FCTM entitled “Abnormal 
operations – navigation”. This section particularly describes the various failure 
modes as a function of the number of defective sources, or as a function of 
the degree of similarity between the various incorrect indications. The section 
below is dedicated to the ADR CHECK PROC / UNRELIABLE SPEED INDICATION 
procedure. It describes, in overall terms, how this procedure should be applied 
from the identification of the anomaly as a starting point up to the use of the 
reference attitude/thrust data.

 � FCOM Bulletin No. 810/1 of June 2004 describes the operation of Pitot-static 
systems, the various causes and consequences of unreliable indicated airspeeds, 
and the key elements of the operational procedures recommended by Airbus.

 � The training materials associated with the Maintenance Flight Training Device 
(MFTD) includes(16) a presentation of the inconsistent indicated speeds resulting 
from the obstruction of the Pitot probes. The document presents six criteria 
for detecting the phenomenon, then describes how the procedure should 
be implemented, from the memory items through to the use of the reference 
attitude/thrust data provided in the QRH.

 � The Flight Crew Training Program (FCTP) is a document intended exclusively 
for instructors. It presents the training programme delivered by Airbus’s TRTO 
and includes details of the type rating and CCQ programmes, in addition to the 
recurrent training. In the FCTP, an unreliable indicated speed exercise in a flight 
simulator is scheduled for the 21st day of the type rating course. The scenario for 
this exercise features the simultaneous insertion, at take-off at 900 feet QNH, of 
a “Pitot obstruction” on the co-pilot’s side and an “ADR 3 FAULT” then, at 1,800 
feet QNH, an “AIRSPEED CHANNEL ADR 1 FAULT”. The main stated objective is to 
familiarise crew with the procedure, starting with the memory items necessary to 
stabilise the fight path.

 � The materials used during the briefing prior to the exercise in a flight simulator, 
is common to all Airbus fly-by-wire aircraft. Based on the unreliable airspeed 
procedure, the presentation describes the actions that should be taken at the 
various phases of an approach to landing: when the failure occurs (notably the 

(16)Session 
scheduled for the 
14th day of the 
standard type 
rating course.
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execution of the memory items, adapted to the situation based on the MSA or 
the circling altitude); when the flight path has stabilised; when the MSA or the 
circling altitude has been reached and during the approach.

In addition, Airbus regularly invites all its operators to participate in conferences, 
during which various safety themes are discussed. Between 1998 and 2008, during 
these events, about ten presentations addressed the issue of unreliable indicated 
speed. These presentations covered:

 � The various possible causes of unreliable indicated speed, such as Pitot icing, 
water ingestion, the disconnection of an ADR;

 � A description of the anemometric system, the link with the various flight systems 
that might be affected and the various forms that the unreliable indicated 
airspeeds might take;

 � How to detect unreliable indicated airspeeds and the pitfalls associated with 
each failure mode;

 � The content and logic of the associated procedures;
 � The technical and operational changes made or being made;
 � The analysis by Airbus of several incidents that have occurred in operation, 

primarily during the transition phases (take-off, climb, descent, landing).

Several presentations that were made emphasised that the provision of information 
to crews and training were presented as indispensable means of prevention alongside 
the changes made to the systems or to the procedures.

The presentation in 2008 focused on:

 � “Startle” effects associated with these events;
 � Stall risks associated with flying at high altitude;
 � Possible confusion between buffeting at high and low speeds.
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Changes in procedures relating to inconsistent  airspeed indications 

FCOM / TU QRH

November 1997 Airbus A320 FCOM Rev 24 Airbus A320 FCOM Rev 24

April 1998 Air France (03.02.34.89) ATA 
34 Navigation

Air France: no procedure in the 
QRH

July 1998 Airbus A320 Rev 26 Airbus A320 Rev 26

November 1998 A320 type rating co-pilot in left seat

December 99

Air France: 
ATA 34 Navigation
Appearance of immediate 
actions 
Distinction between 
immediate actions and actions 
when flight has stabilised

May 2001 A320 type rating Captain

October 2001 Airbus: Self-learning module including PowerPoint briefing of 
erroneous speeds (standard type rating)

June 2002

Airbus A320 Rev 35 
Procedure moved from 
Miscellaneous (03.02.80) to 
Navigation (03.02.34)
Additional memo on 
conditions of application of 
Unreliable Speed Indication 
vs. ADR Check. Description of 
symptoms and consequences 
of the Unreliable Speed 
Indication. Description of 
conditions of application 
according to their impact (or 
absence of impact) on the 
flight controls.

Airbus A320 Rev 35

31 October 2002

Air France: 3.02.34.85
Explanatory note on the 
context of use of the ADR 
Check and unreliable IAS 
procedures.
Application rule for unreliable 
IAS vs. ADR Check procedures

June 2004

Airbus:
FCOM Vol 3. inclusion of 
the bulletin 810/1: notes 
and details on systems and 
Unreliable Speed procedures 
(including a list of possible 
symptoms linked to erroneous 
speed or altitude information, 
including the possible 
existence of the “undue stall 
warning”)
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1.18.3 Information on the Stall

1.18.3.1 Background Information on stalls

The lift of an airfoil depends on its aerodynamic coefficient (Cl) and the square of the 
speed of the airflow. The aerodynamic coefficient increases with the angle of attack 
(noted as alpha) up to a maximum value, after which it decreases when the angle of 
attack continues to increase. This tipping point, where the aerodynamic coefficient is 
at maximum is the marker, from an aerodynamic point of view, for the stall. The angle 
of attack at which the Cz is at a maximum is thus the stall angle of attack (alphamax).

The aerodynamic characteristics of an aerofoil, thus the evolution of the Cl = f 
(alpha) curve, are different between the lower layers (low Mach, subsonic airflow, 
incompressible air) and the high altitudes (higher Mach, airflow close to trans-sonic, 
influence of the compressibility of the air).

Figure 88: Lift graph with high and low Mach

In a more significant manner at a high Mach, the compressibility of the air is notably 
manifested by the appearance of buffet at a high angle of attack, whose amplitude 
can then increase until it becomes dissuasive (deterrent buffet). Test flights are then 
stopped before reaching Clmax. It is then considered that the Clmax is the maximum 
Cl reached during the manoeuvre.

Note: The appearance of buffet (buffet onset) is defined by an oscillatory vertical acceleration 
whose amplitude reaches 0.2 g from peak to peak at the pilot’s seat. The notion of deterrent buffet 
is subjective. It is neither known or shared by the airline pilot community.

Note: This type of test flight is always undertaken during the day, in VMC conditions and in a calm 
atmosphere.

Airbus indicated that apart from the appearance of the aural stall warning, a stall 
generally manifests itself through the following phenomena:

 � Buffet, sometimes pronounced;
 � Lack of pitch authority;
 � Difficulty in controlling roll;
 � Impossibility of reducing the rate of descent.
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1.18.3.2 Flight envelope and margin for manoeuvre at high altitude

The lift equation in straight, level flight at a given flight level can be noted as:

m.g = K.Ps.Cl.M2

where Ps is the static pressure, M is the Mach number, K is an aeroplane-dependant 
constant

At the aerodynamic ceiling, Cl is equal to Clmax, so that m.g = K.Ps.Clmax.M2. There is 
therefore a direct relation between Clmax.M2 and the flight level. The flight envelope 
can then be represented by tracking Clmax.M2 as a function of M: 

Figure 89: Flight envelope at high altitude

Thus, at a fixed mass and flight level FLcrz, the flight envelope is framed by two 
Mach values:

 � The lower limit Mmin marks the stall, associated with the appearance of the first 
of the following phenomena:

 y A loss of lift and the impossibility of maintaining level flight,
 y The presence of deterrent buffet;

 �  The upper limit Mmax, on the other hand, is linked to the effects of the 
compressibility of the air. It is also defined by the presence of buffet. 

Note: This upper limit Mmax was never encountered on the A330, even during test flights. The 
upper limit on this aeroplane is MMO which does not depend on altitude and includes structural 
and aero-elastic limitations (the tests are continued up to MD, thus MMO+0.07).

The higher the cruise level, the more the available Mach range is reduced. In an 
extreme case, the maximum altitude at which the aeroplane can fly (aerodynamic 
ceiling) can only be reached and maintained at a very special Mach. This maximum 
altitude can in addition be limited by the propulsive capacities of the aeroplane: this 
is known as the propulsion ceiling. This is the case for the Airbus A330.

Note: The aerodynamic ceiling is a theoretical notion. Operationally, the mark range available at a 
given level is generally between VLS and MMO.
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1.18.3.3 Basic training 

Both theoretical and practical knowledge of stall phenomena, as well as the associated 
recovery manoeuvres is taught to pilots on light aircraft.

The test allows in particular for the examiner to check the student’s ability to recover 
a stall in various configurations.

1.18.3.4 Theoretical training during ATPL certificate 

The ATPL certificate theory explains the phenomena of wing stall and the corrective 
manoeuvres to perform (reducing angle of attack and appropriate use of thrust).

Note: Its introduction indicated that “a stall is a dangerous phenomenon which is expressed 
mainly by loss of altitude”.

1.18.3.5 Airline training

1.18.3.5.1 Crew training

Stall phenomena are covered during the initial A320 type rating, according to the 
same philosophy of the manufacturer and the operator. They are not reviewed during 
the long haul passage, in CCQ 330, or during recurrent training.

At the time of the accident, the immediate actions were: simultaneously reducing 
angle of attack and applying TOGA thrust from the first signs of the stall (Stall 
warning / buffet onset).  A minimal loss of altitude was expected.

The procedure for reacting to the stall warning at the time of the accident was in the 
“additional abnormal procedures” or in the “supplementary techniques” section of 
the Airbus FCOM. As a result of this classification, the procedure was not reviewed 
during the ECPs.

Note: The “additional abnormal procedures” section was not repeated in the QRH.

Type rating training is carried out in an analytic way (demonstration) and at low 
altitude.

The aim is to demonstrate: 

 � The operation of   protections in normal law (high angle of attack protection /
Alpha-floor);

 � The operation in the event of control law deterioration (alternate law);
 � The first signs of a stall (STALL warning, buffet onset, see also paragraph 1.18.4.3).

1.18.3.5.2 Manufacturer’s information to operators

In its 9th training symposium held in Paris in December 2008, the manufacturer 
discussed the theme of “aeroplane upset recovery”. This symposium aimed to stress 
the main principles of the revision of the “Aeroplane upset recovery training aid” 
document. 
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It developed the following points:

 � Principles and techniques of flight at high altitude;
 � Stalls;
 � Problems that could lead to a stall on Airbus (misuse of automated systems/Pitot 

probe freezing);
 � Recovery techniques. 

In the symposium, Airbus indicated:

 � The need for crew to contain the “startle factor”, and to make measured inputs 
on the controls;

 � That a low speed stall could be confused with high speed buffet.

Note: It was not indicated that high speed buffeting was a phenomenon that does not occur on 
fly-by-wire Airbus.

Note: In addition, it is mentioned in the FCTM that the existence of protections makes training in 
unusual attitude recovery training superfluous.

 1.18.3.6 Changes in the “STALL” procedure

The first member of the crew to obtain A320 type rating within Air France, in November 
1988, was the co-pilot in the left seat. 

At that time, there was no STALL procedure in Air France’s operating manual. The 
Airbus procedure, in effect since November 1997, is included in appendix 11.
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The table below summarises changes to this procedure:

FCOM QRH

November 1998 A320 type rating CO-PILOT in left seat

December 1999
Air France: Additional 
Abnormal Procedure  
TU 03.03.27.01 

May 2001 A320 type rating Captain

September 2004 A320 type rating CO-PILOT in right seat

July 2006

Airbus: 
Addition of note on 
possibility of STALL 
warning at take-off if 
AOA sensor is damaged.
Introduction of 
distinction between 
take-off and other flight 
phases

September 2006
Air France: 
Procedure in the PAC list 
(04.30.01)

February 2007 
(330/340)
October 2007
(320)

Air France 
Addition of note on 
possibility of STALL 
warning at take-off 
if the AOA sensor is 
damaged, leading to 
the appearance of the 
distinction between 
take-off and the other 
flight phases.
Procedure in force at the 
time of the accident

Note: Stall and stall recovery exercises are undertaken during initial pilot training (in particular 
basic training, private pilot, professional pilot, etc.) but not during type rating training.

1.18.4 Simulator fidelity

1.18.4.1 Purpose of simulator training

Flight simulators are used to train pilots to apply normal, abnormal and emergency 
procedures. The exercises may be characterised by an analytical approach (descriptive 
exercises, option to interrupt or pause the exercise) or a real-life approach (realistic 
scenario, conditions similar to those in flight, no intervention from the instructor).

Depending on the stage in the training and on the associated educational objective, 
this training may be carried out using different types of simulator: MFTD, FNPT, FBS 
or FFS which offer different levels of realism (e.g. fixed or motion platforms, systems 
identical to those on the aircraft or generic).
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1.18.4.2 Qualification process for a Full Flight Simulator (FFS)

Flight training tools, a category that includes Full Flight Simulators (FFS), are not 
certified in the way that aircraft are; instead they must be qualified by the national 
civil aviation authorities of the country in which the simulator is operated.

The regulatory criteria applicable to this qualification are defined in Europe by the 
two documents: JAR-FSTD A of 1 May 2008 and ICAO document 9625.

A simulator represents a reference aircraft selected by the operator, whose descriptive 
standard is documented. The qualification of a simulator is a two-step process: 

 � Validation (proof-of-match) tests compare the behaviour of the simulator with 
that of the aircraft. A set of technical data (the data package) compiled during 
flight tests and aircraft certification serve as reference data for this objective 
comparison. The data only covers the aircraft’s known flight envelope;

 � Functional tests are conducted by an expert pilot appointed by the competent 
authority responsible for simulator qualification. These tests are based on a 
standard flight profile lasting 2 to 3 hours, during which the expert pilot evaluates 
subjectively the degree of realism provided by the simulator. This evaluation 
covers the visuals, system operation, the ergonomics of the controls and more 
generally the flying sensations (vibrations, noise) which must be identical to 
those experienced in the aircraft.

These tests are described in a Qualification Test Guide (QTG) that is accepted by 
the authority.

Every flight simulator requires its own qualification. It is valid for one year (unless 
otherwise indicated by the authority) and for a given simulator standard. Any change 
therefore requires a new qualification. Similarly, if there are differences with the 
operator’s other aircraft, they must be covered by a briefing note.

1.18.4.3 Fidelity of the simulator’s recreation of the approach to stall and developed 
stall phenomena

The data package used to qualify the simulator includes a set of values that define 
the onset of buffet, such as amplitude and frequency. These values let the simulator 
reproduce the onset of buffet as the aircraft approaches stall. 

In a developed stall situation the aircraft has left its known flight envelope. The data 
package does not contain any data relevant to this situation. The simulator is not 
representative of the aircraft in a developed stall situation; it does not reproduce the 
deterrent buffet effect.

During initial type rating training, the exercises are designed to teach pilots how to 
avoid, recognise and escape from an “approach to stall” type situation. This approach 
trains the pilots to recognise the signs of an approach to stall (warning, stickshaker, 
according to the type of aeroplane) so that they can take corrective action. These 
exercises provide no guidance in how to recover from a developed stall situation.
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1.18.4.4 Fidelity of the recreation of loss of indicated speed situations

At Air France, one of the features of the exercise scenario for the loss of speed 
indication was that the deviation in the three ADR’s was similar, such that no ECAM 
alarm was generated. The crew had to recognise an inconsistency between the speed 
and the attitude and thrust parameters. To address this inconsistency the crew were 
required to apply the ”IAS douteuse” emergency manoeuvre, and then the QRH 
procedure. The crew had to determine and input the pitch attitude and thrust values 
applicable to climb, level flight, descent and approach, thus covering all the flight 
phases at low altitude (lower than FL100). 

Air France pilots indicated that during this exercise there was no or little surprise or 
startle effect, and that the decision to apply the emergency manoeuvre was expected.

1.18.4.5 Information reported by the manufacturer and the operator

The information provided by Airbus and Air France managers highlighted the 
following: 

 � The data currently available in the data packages prevents the simulator’s flight 
envelope from being extended, since the data in this package is limited to the 
aircraft’s known flight envelope;

 � Simulators do not indicate to the pilots and instructors that the simulator has 
been taken outside the envelope validated by the data packages. Improvements 
to this situation would appear, however, to be possible;

 � The startle effect is difficult to create and/or maintain. The scenarios soon become 
known to the trainees, giving them the opportunity to prepare for the failures in 
advance. In this context, the instructors have an important role to play;

 � The exercises conducted by the French air force when they train pilots to work 
under stress currently appear to set the standard in this field.

1.18.4.6 Work currently underway on simulator fidelity and training

Following the accident to the DHC-8-400 operated by Colgan Air(17) on 12 February 2009, 
one of the NTSB’s recommendations  (A-10-24) was that operators (notably of public 
transport aircraft) should define and codify minimum simulator model fidelity 
requirements to support the training of pilots in how to recover from stalls, including 
stalls that are fully developed. These simulator fidelity requirements should address 
areas such as angle of attack and sideslip, motion cueing, proof-of-match with post-
stall flight test data, and warnings to indicate when the simulator flight envelope has 
been exceeded.

Moreover, questions relating to simulator fidelity are often considered in the context 
of changes to the training of pilots in recovering from unusual attitudes (upset 
recovery) and loss-of-control, with stall being one example.

In this context, the ICATEE (International Committee for Aviation Training in Extended 
Envelopes) working group studied ways of improving training in these situations. This 
working group, led by the Royal Aeronautical Society, is made up of representatives 
from manufacturers (e.g. Airbus, Boeing, CAE), authorities (FAA, CAA UK), operators 
(e.g. Alaska Airlines, Fedex) and the scientific community (universities, researchers). 
It issues technical and regulatory proposals, notably for the attention of the ICAO.

(17)http://www.
ntsb.gov/doclib/
reports/2010/
AAR1001.pdf
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One section of this group works on technical issues regarding simulator fidelity in 
terms of their visuals and motion. The other sub-group studies desirable changes in 
terms of training scenarios and regulation

The working group’s conclusions have not yet been formally stated, but emphasise 
the following: 

 � Pilots must learn to avoid the situations that lead to losing control, and know how 
to recognise and escape from them if they do occur;

 � This learning must be reiterated over the entire duration of pilot training, from 
initial training (PPL) to recurrent line training;

 � The instruction must be based on a range of educational aids: theoretical 
study, demonstration in video form, and practice in a simulator and in flight (in 
acrobatics-enabled aircraft);

 � Simulator fidelity must be improved to avoid the risks of negative training;
 � A simulator capable of recreating unusual attitudes could be developed that is 

generic, and unrelated to one particular aircraft type;
 � The design of the training must be such that it generates surprise and startle 

effect to teach the pilots how to react to these phenomena and how to work 
in stressful situations, in order to prepare the trainees for the actual operating 
environment.

Current discussions coordinated by the EASA and the ANAE(18) also emphasise the 
need to train pilots to deal with the effects of surprise and stress to ensure that the 
training faithfully recreates real-life situations.

1.18.5 Testimony 

1.18.5.1 Crews in flight in the vicinity of the accident zone

In order to more closely determine the environment of flight AF 447, the BEA made a 
list of flights close to airway UN 873 during the night of 31 May to 1st June 2009 and 
asked crews for testimony.  

 h FLIGHT IB6024

Flight IB6024 (Airbus A340) passed at the level of the ORARO waypoint at FL370 
approximately twelve minutes after AF 447. 

The crew saw AF 447 take off while taxiing at Rio de Janeiro. When passing the INTOL 
waypoint, they encountered conditions typical of the ITCZ. These conditions were 
particularly severe 70 NM to 30 NM before the TASIL waypoint. They moved away 
from the route by about 30 NM to the east to avoid cumulonimbus formations with 
a significant vertical development, and then returned to the airway in clear skies 
close to the TASIL waypoint. The crew reported they had difficulties communicating 
with DAKAR ATC.

 h FLIGHT AF459

Flight AF459 (Airbus A330-203) passed at the level of the ORARO waypoint 
approximately 37 minutes after AF 447. The sky was clear but the half-moon, visible 
to the aft left of the aircraft, did not make it possible to see the contour of the cloud 
mass distinctly. After flying through a turbulent zone in the head of a cumulus 
congestus formation at the level of NATAL, without having detected this zone on 

(18)EASA 
conference  
“Staying in 
Control – Loss of 
Control” 4 and 
5 October 2011  
ANEA (French 
national air and 
space academy) 
conference 
“Air transport 
pilots facing the 
unexpected” 29 
and  30 November 
2011.
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the radar, the Captain selected gain in MAX mode. At about 2 h 00, he observed a 
first return that differed significantly depending on whether the radar’s gain was in 
CAL or MAX mode. The TILT was set between -1° and 1.5°. He decided to take evasive 
action to the west, which resulted in a deviation of 20 NM to the left of the route. 
During this evasive action, a vast squall line with an estimated length of 150 NM 
appeared on the screen, which was set to a scale of 160 NM. The returns were yellow 
and red when the radar was set with gain on the MAX position and green and yellow 
when the gain was on the CAL position. No lightning was observed.

ATLANTICO control, informed by the crew of their decision to avoid this squall line 
by taking evasive action to the east, asked them to return to the airway as soon as 
they could. This evasive action meant the aircraft flew between 70 and 80 NM to the 
right of the planned route. In addition, the crew was authorised to climb from FL350 
to FL370. 

On leaving the ATLANTICO FIR, through the TASIL waypoint, the crew attempted 
in vain to contact DAKAR control in HF on the 5565 KHz and 6535 KHz frequencies, 
and on the other HF frequencies given in the on-board documentation. Likewise, the 
attempted ADS-C connection was unfruitful. 

The crew returned to the airway around the ASEBA waypoint, that is to say more 
than 28 minutes after the first theoretical contact with DAKAR control. They reported 
slight turbulence on the edge of the convective zone. 

Radio contact was established with DAKAR control at about 3 h 45, close to the 
SAGMA waypoint. The SELCAL test was performed and the controller asked the crew 
to try to contact AF 447. Several attempts were made on various HF frequencies, and 
then on 121.5 MHz and 123.45 MHz, without any success.

 h FLIGHT LH507

Flight LH507 (B747-400) preceded flight AF 447 by about twenty minutes at FL350. 

The crew reported that it flew at the upper limit of the cloud layer and then in the 
clouds in the region of ORARO. In this zone they saw green returns on the radar on 
their path, which they avoided by changing their route by about ten nautical miles to 
the west. While flying through this zone, which took about fifteen minutes, they felt 
moderate turbulence and did not observe any lightning. They lowered their speed 
to the speed recommended in turbulent zones. They saw bright St Elmo’s fire on the 
windshield on the left-hand side. The crew listened into the 121.5  MHz frequency 
throughout the flight without hearing any message from AF 447.

1.18.5.2 ATLANTICO controllers

The controller of the ATLANTICO ACC explained that he had asked the crew to give 
its estimated time of arrival at the TASIL waypoint. He attributed their failure to 
reply to the fact that the crew had probably lowered the volume of their radio. He 
expected to receive position reports from the crew as they passed the ORARO and 
SALPU waypoints. For this reason, he did not attempt to call the crew via the SELCAL.

The controller waited for the position report from the crew at the ORARO and then 
SALPU waypoints to update the estimated time of arrival at the TASIL waypoint. He 
did not receive a report from the SALPU waypoint, but observed on his radar screen 
that the aircraft had flown over this waypoint at 1 h 49 min.
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At 2 h 00, the controller was relieved. His successor did not receive a position report 
from the ORARO waypoint. He then waited for a report of the passing of the TASIL 
waypoint. The controllers indicated that on that night, the HF communications were 
very poor.

1.18.5.3 DAKAR controllers 

The controllers of the DAKAR Oceanic ACC on duty at the time of the event indicated 
that, on that night, numerous flight plans were not received. They added that the 
quality of reception of the HF used deteriorated during their shift. They stated that 
they had not been concerned about the absence of radio contact with AF 447, since 
aircraft frequently crossed all or some of the DAKAR Oceanic FIR without making 
radio contact. They indicated that they had not been informed, when coordinating 
with the Brazilian controller, of the loss of radio contact between AF 447 and Brazil. 
In anticipation of a change of shift, the display of the air traffic on the Eurocat screen 
was updated by “accepting” all the flight plan tracks. The shift changed at 2 h 30.

The controllers on duty for this new shift indicated that they had coordinated with 
regards to AF 447 with the controller of the SAL ACC, by providing them with the 
estimated time of entry into the SAL FIR. They specifically clarified that no radio 
communication had been established with the flight. At 8 h 30 they informed the 
head of the air traffic office of the absence of contact with AF 447. The latter passed 
on this information to the DAKAR RCC.

1.18.6 Previous Accidents and Recommendations

Accidents with a relation to airspeed problems

 h Accident on 1st December 1974 to the Boeing 727 operated by Northwest Airlines

The aeroplane was scheduled to undertake flight 6231 between New York JFK, NY 
(United States) and Buffalo, NY. About 10 minutes after take-off, the crew noticed that 
the speed and the rate of climb were very high, respectively 405 kt and 6,500 ft/min. 
A little later the overspeed warning triggered, quickly followed by the stall warning 
(stickshaker). The crew attributed the stickshaker to the appearance of «  Mach 
buffet » and tried to reduce the indicated speed. The aeroplane levelled off towards 
24,800 ft and then stalled. It went into an uncontrolled spiral spin during which the 
stabilizer separated from the aeroplane. It struck the ground about 1 minute 20 after 
beginning its descent.

The NTSB report identified the probable cause of the event as being the loss of control 
of the aeroplane due to the crew not recognising and correcting the aeroplane’s 
situation : high angle of attack, low speed stall and spiral descent. The report specified 
that the stall was caused by inappropriate crew reactions to erroneous speed and 
Mach displays that resulted from blockage of the Pitot probes through atmospheric 
icing. The report stated that contrary to standard operating procedures, the crew had 
not switched on the Pitot probe heating. 

The NTSB issued three recommendations to the FAA including one to issue a safety 
information bulletin to inspectors in order to underline the need for pilots to use pitch 
attitude information when other displays linked to the airspeed measurement systems 
are unreliable. It stated that the content of this bulletin should be distributed widely to 
operators so that the latter would include it in their procedures and training programmes.
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 h Accident on 6 February 1996 to the Boeing 757 operated by Birgenair

The aeroplane was scheduled to undertake flight 301 from Puerto Plata (Dominican 
Republic) to Frankfurt. During the takeoff run the Captain noticed that his speed 
display was not working. The copilot’s was working so he decided to continue the 
takeoff. During climb towards 4,700 ft the Captain’s speed display indicated 350 
kt, which led the autopilot to increase the pitch attitude and the autothrottle to 
reduce thrust. The crew received «  Mach airspeed  » and «  rudder ratio  » warnings. 
The different speed displays and the simultaneous triggering of the overspeed and 
stall warnings (stickshaker) led to confusion in the cockpit. Noticing finally that the 
aeroplane was losing speed and altitude, the crew disconnected the autopilot and 
applied maximum thrust. A short time later, a GPWS warning sounded and the aircraft 
struck the sea a few seconds later.

The commission of inquiry determined the probable cause of the accident was the 
crew ‘s failure to recognise the activation of the stickshaker as a sign of an imminent 
stall as well as their failure to apply appropriate procedures to recover control of the 
aircraft. The report further states that:

 � The erroneous speed displays were caused by a Pitot probe being blocked, 
probably by local insects, the aeroplane having remained on the ground for 
maintenance for 20 days before the accident flight;

 � During the climb, the crew never discussed or brought to light the fact that 
procedures were available to manage a situation with erroneous airspeeds;

 � The pilots never focussed their attention on the greatly increasing pitch attitude, 
nor on the alternative speed indications presented on other instruments;

 � The obstruction of the Pitot probe was not the probable cause of the accident, 
although this was a contributing factor;

 � This accident shows that international requirements for the training of flight 
crews had not been maintained at a level that was consistent with the expansion 
and modernisation of the aviation transport industry and the development of 
modern aeroplanes.

Several safety recommendations were issued by the commission of inquiry, in 
particular on information supplied to pilots to understand such a problem, on adding 
a specific warning on unreliable airspeeds and on pilot training.

 h Accident on 2 October 1996 to Boeing 757 operated by Aeroperu

The aeroplane was scheduled to undertake flight 603 from Lima (Peru) to Santiago 
(Chile). Immediately after takeoff the crew noticed that the altitude and speed displays 
were changing in an abnormal manner. They received a windshear warning, despite 
very calm weather and declared an emergency with the intention of returning to 
land at Lima. The aeroplane climbed up to a maximum of 13,000 ft and then began to 
descend. During the descent, the speed displayed to the Captain was so high that it 
triggered the overspeed warning even though the stall warning (stickshaker) was also 
active. The total confusion that ensued in the cockpit led the pilots to depend on the 
altitude indications given by the controller without realising that it was information 
supplied by the aeroplane itself in response to a radar signal which was thus false. 
After about 30 minutes of flight the aeroplane finally struck the sea off the coast 
of Lima.
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The investigation showed that the static pressure sensors had been covered 
with adhesive tape before a maintenance operation, but that these had not been 
removed. The report said that this was the cause of the accident, but also that the 
crew should have taken into account the GPWS warning that sounded just before the 
collision with the sea and the height values from the radio altimeter. It made several 
recommendations, specifically on training and recurrent training for pilots and the 
modification of maintenance practices. It should be noted that many crews, not only 
with this operator, had not received any of the information that should have been 
given to them urgently following the accident to the Birgenair Boeing 757 in the 
Dominican Republic eight months previously.

Accidents related to loss of control of flight path in a stall situation

Other recent accidents were caused by loss of control of the aeroplane flight path 
in a stall situation. At the authorities’ request, the investigation reports led to the 
creation of various working groups made up of academics, manufacturers, operators 
and authorities.

In liaison with stall issues, the causes and recommendations reported in these 
accidents are summarised below.

 h Accident on 22 December 1996, DC-8 operated by Airborne Express

Cause:
 � Inappropriate inputs by the PF on the controls and ineffective monitoring by the 

PNF to identify and recover a stall situation.

Contributing Factor:
 � Simulator fidelity in relation to a stall.

Recommendations: 
 � Improvement of characteristics of flight simulators to represent a stall;
 � Development of guides on stall training;
 � Practising stall recovery in simulator;
 � Presentation to pilots of the angle of attack and training in using this information

 h Accident on 14 October 2004, CL-600 operated by Pinnacle Airlines

Cause: 
 � Stall following crew inputs

Recommendations: 
 � Improve training in operations at high altitude;
 � Training for stall recovery at high altitude.

 h Accident on 16 August 2005, MD-82 operated by West Caribbean Airways

Cause:
 � Failure to take actions to prevent a stall, and defective CRM (lack of effective 

communication, decision making process, ranking of priorities), enabling neither 
the prevention nor the identification of a stall situation and as a result making 
inappropriate inputs.

Recommendations: 
 � Knowledge of aeroplane performance in terms of altitude limitations;
 � Simulator training on identifying a stall at high altitude and on recovery procedure;
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 � Training crew at high altitude in variations in angle of attack, speed and their 
effects on the energy condition of the aeroplane;

 � Implementation of a CRM training programme linked in particular to the execution 
of memory items. The programme can use the accident scenario to check the 
development of the situation and the execution of appropriate actions;

 � Reinforcing awareness of the situation and of effective communication during 
CRM training courses “in order to effect a definitive change in the operational 
culture of flight crew, enabling them to decide openly and with the required 
professional maturity”.

 h Accident on 27 November 2008, A320 operated by XL Airways Germany

Cause:
 � Loss of control of the aeroplane by the flight crew following an improvised 

demonstration of the functioning of the angle of attack protections, when the 
blocking of the angle of attack sensors made it impossible for these protections 
to be triggered.

Recommendation:  
 � Evolution in training exercises and procedures relating to techniques on approach 

to stall.

 h Accident on 12 February 2009, DHC Q400 operated by Colgan Air

Causes:
 � Inappropriate inputs by the Captain in response to the activation of the stick 

shaker, leading to aeroplane stalling;
 � Insufficient monitoring of the speed parameters;
 � Absence of flight management by the Captain.

Recommendation: 
 � Training that includes recovery from proven, unexpected stalls that lead to AP 

disconnection.

1.19 Useful or Effective Investigation Techniques

1.19.1 Resources used for phase 4

Phase 4 proceeded on site from 25 March to 9 April 2011 with the same underwater 
equipment that had already been used in the previous campaign (phase 3). The 
resources involved were two REMUS 6000 autonomous underwater vehicles (AUV) 
belonging to the Waitt foundation and the German oceanographic institute Geomar 
(Research Center for Marine Geosciences). These vehicles were operated by the 
Woods Hole Oceanographic Institute (WHOI) from the exploration vessel M/V Alucia.
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Figure 90: Alucia

Figure 91: AUV REMUS 6000

The wreckage was discovered on 2 April 2011 with the aid of the REMUS AUV’s side 
scan sonar adjusted to a frequency of 120 kHz and a 700-metre range.

Figure 92: General view using sonar imaging: 120 kHz, range of 700 m

The first passage brought to light a concentration of backscattered data over an area 
of around 600 metres by 200 metres. 

During the course of the following mission, the REMUS was programmed to take 
photos in bursts at a height of around ten metres to formally identify the wreckage 
of flight AF 447. 
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Figure 93: Engine

Figure 94: Wing

Figure 95: Section of fuselage
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Figure 96: Landing gear

During phase 4, the area was scoured several times by the REMUS AUVs with different 
sonar settings to make sure that no possible debris, located beyond the main zone, 
was forgotten. This exploration made it possible to localize a part of the fuselage 
about two kilometres from this zone as well as objects such as oil drums that did not 
come from the aircraft (see the following figure). The initial imagery was subsequently 
enhanced by high resolution 410 kHz sonar images at various range scales.

Figure 97: Overlay of sonar images taken with various settings:

120 kHz, 700 m range scale - 410 kHz, 100 m range scale - 410 kHz, 50 m range scale

These representations of the wreckage site were also enhanced and completed 
by photographs, taken by the REMUS AUVs at a height of about ten metres above 
the seabed. 
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These photos were taken from intercepting axes in order to pass over each piece of 
debris several times, in different directions. A total of around 85,000 photographs 
were taken in this way.

These photographs enabled the first chart of the wreckage site to be produced in 
mosaic form (see diagram below).

Figure 98: Visualisation of the photo mosaic obtained with REMUS AUV images  

and the aeroplane debris identified by using the REMORA ROV 

The resources used during phase 4 helped the BEA to save a considerable amount of 
time in the following phase, especially the photos of the wreckage. The investigators 
thus had a complete two-dimensional representation of the crash site based on high 
resolution side-scan sonar images and photos before working on site with an ROV. 
These photos proved very useful for both preparing phase 5 and then conducting 
operations on site. They would have provided even more information if they had 
been in colour.

1.19.2 Resources used for phase 5

Phase 5 was carried out in two parts:

 � The first part was dedicated to the search for and recovery of the recorders as 
well as other aeroplane parts. This was done on site from 26 April to 13 May 2011;

 � The second part involved mapping the site and its surroundings and the recovery 
of the bodies. These operations lasted on site from 21 May to 3 June 2011.

To accomplish these tasks effectively, the BEA selected Alcatel Lucent and Louis 
Dreyfus Armateurs cable vessel the Ile de Sein, which was equipped with the Phoenix 
International Remora III ROV (Remotely Operated Vehicle) capable of working at a 
depth of 6,000 metres.
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2 - ANALYSIS

2.1 Accident Scenario

This part is mainly based on the results of the work of the Human Factors group, 
whose approach is described in paragraph 1.16.8.

2.1.1 From the beginning of the CVR recording until the autopilot disconnection 

2.1.1.1 Safety expectations

In a situation analogous to that which preceded the accident (cruise in the area of 
the ITCZ(19), the aeroplane is in autopilot. Crews generally just undertake confident 
monitoring of the flight path and the automated systems due to their level of 
performance and reliability. Their preoccupations are above all centred on tactical 
and strategic aspects of navigation and fuel management. 

The risk model in the mental representation of the situation by crew members 
contains:

 � As a top priority, the risk associated with crossing the ITCZ and consequently 
with turbulence, and perhaps with icing. The ITCZ is a zone that may be difficult 
to cross, and the crossing strategy depends as much on knowledge of the 
aeroplane (management of meteorological radar and knowledge of limitations 
and performance for example) as on the changes in the ITCZ itself (vertical 
development and horizontal movement). This strategy implies flight management 
that may require decision making, such as avoidance or a change of flight level;

 � A second risk, doubtless far behind the first in the scale of perceived priorities, 
associated with the risks of loss of HF contact with ATC, of mid-air collision, of 
triggering an alert phase and of not being able to declare a need for a diversion 
and/or storm cell avoidance;

 �  A third risk present in the communications exchanged by the crew and linked to 
the management of a possible diversion and to the arrival conditions (for example, 
accessibility of alternate aerodromes for a diversion in the event of pressurisation 
or engine failure etc.);

 �  Lastly a set of risks grouping together all the possible problems and malfunctions 
on board, in the cockpit or cabin, and in the environment, the air mass or on 
the ground. This fourth group was not expressed verbally in the recorded 
communications, or any specific action. It is always present in the background 
of a pilot’s cognitive activity, and is expressed by a visual/attention circuit which 
may not be recorded by current equipment.

The management of the first three areas of risk needs active handling of the 
action plan underway, that’s to say by preoccupations and occupations: search 
for information (example adjusting the radar), thinking, calculations, evaluations, 
judgements, decisions, communications between crew members, possible actions 
on the flight path targets. The management of the fourth group of risks is performed 
by monitoring various marker parameters, signals and corresponding warnings. It 
remains passive until detection of an anomaly, which will trigger the appropriate 
active response by rapidly reorganising the action plan around new priorities.

(19)Inter-tropical 
convergence 
zone.
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From a CRM point of view, resource management within crews is ensured in particular 
through communication, listening and the recognition of the contributions of all crew 
members. The organisation of the cooperation between the crew members, as well 
as of the explanations on the tactical and strategic decisions, guarantee an adapted 
management of all crew resources. Captains must take the measure of these aspects 
and their leadership should enable the clear distribution of tasks and functions to be 
maintained at all times, even more so when crews are augmented.

2.1.1.2 Cruise and crossing the ITCZ: perception and management of the operational risk

We do not know what images of the meteorological situation the crew had on the ND, 
which are not recorded. However, it can reasonably be inferred from the satellite image 
of the situation to be crossed that the crew was faced with information calling for at 
least active monitoring and tactical adjustments to the navigation to avoid the storm 
centres, as other crews who were in the same zone at the same time were able to do.

In fact, the risk associated with the crossing of the ITCZ was discussed several times 
by the crew. In particular, from 1 h 45 to 2 h 00, the Captain and the PF noticed that 
they were entering the cloud layer and discussed the strategy to adopt. To avoid 
flying in the cloud layer while crossing the ITCZ and therefore to limit flight in the 
turbulent conditions that he mentioned several times(20), the PF wanted to change 
flight level and fly above the cloud cover, while recognising that it was not possible 
for the moment to climb two levels. He made several allusions or suggestions on the 
flight levels and the temperature from 1 h 35 min 20 onwards. He even considered 
requesting a non-standard level 360. His various interventions in the minutes that 
preceded the autopilot disconnection showed a real preoccupation, beyond the 
simple awareness of an operational risk. Some anxiety was noticeable in his insistence.

The Captain appeared very unresponsive to the concerns expressed by the PF about 
the ITCZ. He did not respond to his worry by making a firm, clear decision, by applying 
a strategy, or giving instructions or a recommendation for action to continue the 
flight. He favoured waiting and responding to any turbulence noticed. He vaguely 
rejected the PF’s suggestion to climb, by mentioning that if “we don’t get out of it 
at three six, it might be bad”. He certainly meant that if the aeroplane was still in 
turbulent conditions at FL360, the margins for manoeuvre would be further reduced. 
Nevertheless, the REC MAX level was then above FL370 which guaranteed some 
margin for manoeuvre at this level (see paragraphs 1.16.12 and 1.16.5.7). It was usual 
at Air France to allow a certain margin in relation to REC MAX, which is likely the 
reason the crew did not envisage climbing to FL370.

The Captain neither expressed nor explained his position clearly. He seemed to 
have good experience of the ITCZ, and did not appear personally worried (at worst 
he expected to be disturbed by the turbulence during his rest). He noticed the 
turbulence and observed the St. Elmo’s fire. But it seemed that having seen the 
information available on the radar, he deemed the appearance of the ITCZ crossing 
to be “normal”. 

As we do not have the radar image which was provided by his ND, it is difficult to 
assess the Captain’s appraisal. But the aeroplane had not encountered, before or 
during the accident, an exceptional meteorological situation from the point of view 
of phenomena that are traditionally avoided in stormy environments (turbulence, 

(20)In cruise, 
the main risk 
associated with 
turbulence is the 
risk of injuries to 
crew members 
and passengers. 
Turbulence 
is essentially 
a problem of 
comfort that 
can disrupt the 
service, the 
passengers 
and the crew 
members that 
are resting.
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lightning, icing). Even if the crews of flights before or after flight AF 447 made 
sometimes considerable detours of the zone, the crew of flight AF 447’s crossing of a 
convective area at 1 h 50, where the level of turbulence was acceptable, (see 1.11.2) 
may have supported the Captain in his decision not to deviate from the flight path. 
The recording of the load factor showed that the turbulence remained light. It is 
therefore probable that the radar image available was not alarming.

Note: When the PNF replaced the Captain, he noticed that the gain on the weather radar was set 
to “calibrated”. It was thus likely that this was already the case before the Captain’s departure. 

At no point did the Captain consider (any more than the PF did, in fact) any lateral 
avoidance. Even then, he did not clearly explain his point of view. He gave the 
impression of not really wanting to be involved in the decision, and of considering 
that, given the globally “normal” nature of the situation, choices would be made 
later and would only be tactical (example: lateral avoidance of a storm cell), and that 
he could transfer them to his crew during his rest period. Before leaving the cockpit, 
the Captain did not seem to have discovered that the crossing of the ITCZ was a 
concern for the PF. Some crews on flights that preceded or followed AF 447 made 
avoidance manoeuvres around the zone that were sometimes quite significant, but 
with different strategies. In several cases, avoidance took place after encountering a 
zone of moderate or severe turbulence, which was never the case for AF 447.

Note: Taking into account the discussions between the Captain and the copilot, the lack of 
any decision to perform a lateral avoidance manoeuvre could not be explained by a fuel 
management problem. 

The relief crew did in fact inherit some decisions to make. From 2 h 01, the PF mentioned 
the subject of the ITCZ, turbulence and the choice of flight level in his briefing to the 
co-pilot who joined him as relief for the Captain. From 2 h 04 to 2  h  08, after the 
Captain’s departure, the two co-pilots discussed the ITCZ again. The PF repeated his 
idea of climbing to level 360, without doing so. Acknowledging this non-solution, he 
warned the cabin personnel of imminent turbulence. After changing the gain on the 
weather radar from “calibrated” to “max”, the PNF then suggested as of 2 h 08 min 
03 a route alteration, which the PF willingly executed. It seems that the image then 
obtained appeared sufficiently different as to require a change of strategy. From his 
arrival in the cockpit, the PNF gradually established his seniority and authority over 
the PF.

The risk of loss of speed information related to crossing a high density of ice crystals 
was never mentioned. Some incidents had been experienced by crews and information 
about them had been made available to pilots (see paragraph 1.17.1.5.3.3). However, 
this information was not sufficient to get crews to integrate the risks associated with 
the obstruction of Pitot probes in the management of threats in cruise.

2.1.1.3 Relief of the Captain

Given the programmed duration of flight and in accordance with the Air France 
Operations Manual and the regulations in force, the flight crew was augmented by a 
co-pilot to enable in-flight rest periods, guaranteeing sufficient crew availability. This 
augmentation specifically enabled the Captain to take an in-flight rest by designating 
a rated co-pilot as relief pilot. This obviously implied the possibility of delegating 
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operational decisions to him, and the airline guidelines mention this clearly: “The 
relief pilot is the Captain’s replacement. In his absence, he makes the operational 
decisions necessary to the conduct of the flight according to the instructions left by 
the latter”. It should be noted that in case of a failure, the presence of a Captain in the 
cockpit is not guaranteed, and nor is the presence of the two pilots.

2.1.1.3.1 Choice of time period

The time period chosen by the Captain for his in-flight rest resulted in him leaving 
the cockpit at the start of the ITCZ crossing, leaving the two co-pilots to handle this 
crossing. This choice could be contested, without necessarily calling into question 
the principle of a relief co-pilot and the trust that this implied in the co-pilots. The 
ITCZ is in fact a specific environment that confronts flight management with very 
dynamic situations with high levels of uncertainty. Although thousands of crossings 
of the ITCZ are carried out without incident each year, it remains one of the moments 
in a flight where all the crew’s attention is required, and where a captain’s experience 
is an undeniable plus. The choice of in-flight rest time made by the Captain of flight 
AF 447 is however understandable considering the following:

 � For him, the ITCZ crossing appeared “normal” in relation to the known risks, given 
the information available;

 � The co-pilot in the left side seat was three times more experienced with both the 
aeroplane and South American trips than the Captain himself, even though he 
was not designated as relief pilot;

 � The time period for in-flight rest chosen was that commonly used by most of the 
other Captains in the airline.

On the strategic level, one might question the relevance of the “collective” practice 
that leads Captains to choose, as their in-flight rest period, a time that could 
correspond to crossing the ITCZ: waiting until this zone has been crossed would only 
have delayed the start of the Captain’s rest period by about fifteen minutes

2.1.1.3.2 Choice of relief pilot 

The investigation was not able to determine if the Captain had clearly defined the 
roles between the two co-pilots during flight preparation and in anticipation of his 
absence during his in-flight rest time. He did however implicitly designate as relief 
pilot the co-pilot in the right seat and PF, but did so in the absence of the second 
co-pilot, just before waking him. If this distribution of roles probably contained no 
ambiguity for the persons concerned, being in line with the principle in the Operations 
Manual (co-pilot as relief Captain and PF on the right), it was not however free of 
difficulty. Indeed, the overall experience and on type of the PF, designated implicitly 
as relief Captain, was significantly less than that of the PNF, also OCC executive of the 
airline and as such enjoying recognition as an expert by his peers. 

The Captain’s question to the PF (“you’re a PL, aren’t you?”) suggested that he had 
not thought about his relief for this flight until that moment. We might therefore 
question his designation as relief Captain instead of the PNF.

A natural assertion of authority by the PNF is then observable: he seemed to master 
the environmental context better (ozone) and suggested, even asserted, the 
avoidance strategy.  The PF did not resist this tendency. Without this leading to the 
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slightest conflict, after the autopilot disconnection, it rapidly led to the inversion of 
the normal hierarchical structure in the cockpit, with leadership passing to the PNF in 
the left seat without the role of command being formally and explicitly transferred. 

2.1.1.3.3 Handover arrangements 

During the handover, before leaving the cockpit, the Captain did not perform the 
planned briefing himself. However, he was present in the cockpit during the briefing 
that the co-pilot in the right seat made to the co-pilot who came to the cockpit at 
1  h  59 min 30 and sat in the Captain’s seat. In his briefing, the PF mentioned the 
points listed by the Air France Operations Manual:

 � The presence of previous and future turbulence;
 � The fact that they were flying through clouds;
 � That they could not climb because of the higher temperature than expected and 

therefore a REC MAX “a little too low”;
 � The HF contact with the Atlantico centre and the logon failure with the Dakar 

centre;
 � The contact made with dispatch.

During this briefing the Captain recalled the Dakar HF frequencies when requested by 
the PF. Although he did not formally carry out the briefing himself, one can see that 
the objective of correct transmission of information to the relief pilot was reached. 
However, the Captain did not explicitly designate his relief in the presence of the two 
co-pilots, nor did he leave specific instructions for the ITCZ crossing. In particular, he 
did not make any judgements on the meteorological situation which was going to be 
encountered during the ITCZ crossing, and left no instructions concerning the tactics 
for crossing the ITCZ, nor on the PF’s wish to climb.

2.1.2 From the autopilot disconnection to triggering of the STALL 2 warning 

Note: To avoid any ambiguity in the following text, the triggering of the stall warning at 
2 h 10 min 10 for three seconds is referred to as « STALL 1 warning ». The warning triggered at 
2 h 10 min 51, is referred to as « STALL 2 warning ».

2.1.2.1 Safety Expectations

The autopilot disconnection must lead to priority being given to regaining manual 
control by the PF and the PNF monitoring in order to ensure control of the aeroplane 
and monitoring of the flight path defined by the crew. 

In addition, the management of speed indication-related anomalies must generate 
a response, in a given period of time, which involves identifying the situation and 
applying the appropriate procedure. Furthermore, to ensure that expectations of the 
crew are satisfied, a number of conditions must be met:

 � The signs of the anomaly should be salient;
 � Information relating to the anomaly or to the diagnosis should be displayed and 

identified;
 � The memory items associated with awareness of an airspeed indication anomaly 

should be known;
 � Information to assist in understanding the situation should be provided.
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2.1.2.2 Detection of a problem

Before disconnection, the autopilot maintained the aeroplane’s flight path by 
countering light to moderate turbulence; the autothrust had a slight reduction to 
adjust the cruise mach towards the value selected on the FCU of 0.80. 

The first disturbances in speeds 1 and 2 occurred at about 2 h 10 min 04, causing 
the autopilot to disconnect, which was signalled by a visual and an aural (cavalry 
charge) warning. The crew did not necessarily perceive these transient losses of 
speed information and the associated losses of altitude. 

The first prolonged drop (at least 5 seconds) in speed on the right-side PFD began 
not later than 2 h 10 min 07. It caused a drop in the altitude displayed on this PFD of 
approximately 330 ft. From 2 h 10 min 08, the speed became abnormal on the left. 

Since the salience of the speed anomaly was very low compared to that of the 
autopilot disconnection, the crew detected a problem with this disconnection, and 
not with the airspeed indications. The crew reacted with the normal, learned reflex 
action, which was to take over manual control (indicated by the PF’s call-out “I have 
the controls”, acknowledged by the PNF). For the same reasons relating to salience, it 
is likely that the crew had not yet perceived the reconfiguration to alternate law and 
the disconnection of the A/THR.

It was thus the autopilot disconnection that made the crew aware that there was a 
problem. The crew, at this time, did not know why the AP had disconnected and the 
new situation that had suddenly arisen clearly surprised the pilots – a normal reaction 
for any crew. This degree of surprise can be explained by the contrast between the 
triggering of a warning and the situation in the cruise phase, during which the pace 
of change tends to be slow and concentration levels are lower. In addition, the crew’s 
mental resources were already taken up by turbulence avoidance manoeuvres and 
the plan to climb during the minutes that preceded the autopilot disconnection. 
Associated with the environmental conditions (smell of ozone that the PF did not 
seem to recognise and the noise due to the ice crystals), the PF’s attitude in the 
minutes that preceded the autopilot disconnection probably constituted a factor 
that significantly added to the highly charged emotional factors during the sudden 
and unexpected change in the situation, at night and while passing through the 
ITCZ, which suddenly confirmed his vague concerns about it. Three seconds after 
the autopilot disconnection, surprise was a pilot’s natural reaction and cannot be 
considered as specific to this crew. 

From the moment the crew detected a problem, making an action plan should have 
begun with the definition of the flight path to follow, before application of any 
procedure.

2.1.2.3 Control of the flight path

When the autopilot disconnected, the roll angle increased in two seconds from 0 to 
+8.4 degrees without any inputs on the sidesticks. The PF was immediately absorbed 
by dealing with roll, whose oscillations can be explained by:

 � A large initial input on the sidestick under the effect of surprise;
 � The continuation of the oscillations, in the time it took to adapt his piloting at 

high altitude, while subject to an unusual flight law in roll (direct law).
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In addition, the deviation in roll may have been caused by the risk of turbulence that 
had preoccupied the PF in the minutes leading up the autopilot disconnection.

Following the autopilot disconnection, the PF very quickly applied nose-up sidestick 
inputs. The PF’s inputs may be classified as abrupt and excessive. The excessive amplitude 
of these inputs made them unsuitable and incompatible with the recommended 
aeroplane handling practices for high altitude flight. This nose-up input may initially 
have been a response to the perception of the aeroplane’s movements (in particular the 
reduction in pitch angle of 2° associated with the variation in load factor) just before the 
AP disconnection in turbulence. This response may have been associated with a desire 
to regain cruise level: the PF may have detected on his PFD the loss of altitude of about 
300 ft and loss of vertical speed of the order of 600 ft/min in descent. The excessive nature 
of the PF’s inputs can be explained by the startle effect and the emotional shock at the 
autopilot disconnection, amplified by the lack of practical training for crews in flight at 
high altitude, together with unusual flight control laws.  

Note: The TAM case described in paragraph 1.16.2 is a further illustration of the startle effect 
generated by discovering the problem.  

Although the PF’s initial excessive nose-up reaction may thus be fairly easily 
understood, the same is not true for the persistence of this input, which generated 
a significant vertical flight path deviation. The safety investigation has made it 
possible to exclude, with reasonable certainly, the explanation that the repeated 
nose-up inputs were caused by the PF’s unsuitable flying position (examination of 
the adjustment of his seat showed that it was adjusted in a way that was adapted 
to his morphology). Examination of the FDR parameters indicated that during the 
flight controls check undertaken while taxiing in Rio-de-Janeiro, the roll inputs did 
not induce a pitch component. There remain a number of possible explanations:

 � The crew’s attention being focused on roll, speed or on the ECAM;
 � The initiation, more or less consciously due to the effects of surprise and stress, 

of the action plan (climb) desired by the PF prior to the autopilot disconnection;
 � The attraction of “clear sky”, since the aeroplane was flying at the edge of the 

cloud layer;
 � A saturation of the mental resources needed to make sense of the situation, to 

the detriment of aeroplane handling;
 � The presence of turbulence that may have altered perception of aeroplane 

movements in response to his inputs.

Whether the PF’s nose-up inputs were deliberate or not, there was no verbal expression 
of this to the PNF. At no time did the PF indicate his intentions or objectives with 
respect to the control and stabilisation of the flight path. Although the PF’s various 
roll inputs indicate his intention to keep the wings horizontal, it is not possible 
to determine what the PF’s target was in the longitudinal axis. Four seconds after 
the autopilot disconnection, the rapid increase in nose-up attitude resulted in the 
triggering of the STALL 1 warning. This warning only appeared to provoke a small 
aeroplane handling reaction from the PF. The PNF asked “What is that?” which may 
refer to the stall warning. It is possible that the PNF, faced with a short, truncated 
warning, did not identify it. However, rather than indicating his failure to recognise 
the warning, this question seems to mean that the PNF did not consider the warning 
to be relevant in the context of the fact that he was not necessarily aware of:
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 � The PF’s significant nose-up inputs that generated an increased angle of attack;
 � The relative proximity of a flight envelope limit;
 � The reconfiguration to alternate law (which he only called out later): if he thought 

they were still in normal law, the warning could have seemed to be irrelevant.

From the previous events studied (see 1.16.2 and 1.16.8.4) it is clear that almost all the 
crews that heard the stall warning considered it to be surprising and irrelevant. These 
judgements may be explained by the lack of awareness of the margins in relation 
to the trigger threshold of the stall warning and by not knowing the triggering 
conditions of the warning, which are a function of the angle of attack and Mach.

It would also seem unlikely that the PNF could have determined the PF’s flight path 
stabilisation targets. It is worth noting that the inputs applied to a sidestick by one 
pilot cannot be observed easily by the other one and that the conditions of a night 
flight in IMC make it more difficult to monitor aeroplane attitudes (pitch attitude 
in particular). In addition, a short time after the autopilot disconnection, the PF’s 
statement that he had the controls and his reaction to the initial deviations observed 
(in particular in roll) may have led the PNF to change his action priorities. Identification 
of the failure appeared to become a priority over control and flight path monitoring. 
Consequently, he was unaware of the climb.

Control of the flight path does not correspond to what is expected. The amplitude 
of the actions may doubtless be explained by the highly charged emotional factors 
generated by the unexpected autopilot disconnection in the context of the flight.

2.1.2.4 Identification of the situation

Once the first actions in response to the perceived anomaly is executed (returning to 
manual piloting following AP disconnection) and the flight path stabilisation ensured, 
the philosophy of both the manufacturer and the operator is for the crew to look for 
additional information necessary to understand the problem and take action. Three 
seconds after the autopilot disconnection, the ECAM displays no information that is 
likely to point to a speed indication problem:

The ECAM mentions a maximum speed that should not be exceeded but does not 
mention a minimum speed. This could lead crews to suppose that the main risk 
is overspeed. In the absence of any reliable speed indication, this might lead to a 
protective nose-up input that is more or less instinctive. It should be noted that 
the reconfiguration to alternate law occurred because of the triggering of specific 
monitoring that is designed to react to events like icing of several Pitot probes (see 
the explanation of the PROBE PITOT 1+2 / 2+3 / 1+3 message in  paragraph 1.16.2.4 
in the first Interim report).  However, no explicit indication that could allow a rapid 
and accurate disgnosis was presented to the crew.

In theory, the identification of the situation is mainly up to the PNF and begins 
once the flight path is stabilised and/or secured. In the case under consideration, 
this identification began while the flight path may have appeared to have been 
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controlled but was not stabilised. The ability to identify the problem was then largely 
if not totally diminished by interference between monitoring the flight path and the 
identification of the failure.

The crew nonetheless built an initial mental representation of the situation about ten 
seconds after the autopilot disconnection, based on their identification of a speed 
indication anomaly. However, they did not specify how many speed sources(21) were 
lost. The loss of airspeed indication was called out almost simultaneously by both 
pilots. However, their call-outs do not confirm beyond doubt that they had fully 
understood the situation. When the PNF stated “we’ve lost the speeds”, he could 
have been referring to the loss of indicated airspeed information or to the loss of 
information about the characteristic speeds. It is possible that the identification of an 
airspeed anomaly, also noted by the PF (“we haven’t got a good display of speed”), 
was prompted by the triggering of the STALL 1 warning. This may have drawn the 
co-pilots’ attention to the speed tape on their PFDs through the association between 
the stall and the speed parameter. 

Identifying the loss of speed information could have prompted the crew to apply the 
“IAS douteuse” emergency manoeuvre, if they had considered that the safe conduct 
of the flight was “dangerously affected”, this condition being generally associated 
with avoiding a collision with the high ground or terrain. Training for this emergency 
manoeuvre in a flight phase at low altitude may reinforce this interpretation by crews. 
In addition, the study of events involving loss of speed indications in cruise tends to 
show that the emergency manoeuvre is never applied, so much so that the failure to 
perform this manoeuvre is not specific to the crew of AF 447.  

Neither was the non-ECAM emergency procedure “Vol avec IAS douteuse/ADR 
Check Proc” called out. A call for this procedure must be sufficiently practised for it 
to become an automatic response to awareness of an airspeed indication anomaly, 
regardless of any need to construct a more elaborate understanding of the problem. 

The ability to establish a link between an observed anomaly and a procedure, 
particularly when the anomaly is not displayed on the ECAM, is one of the objectives 
of training; this ability is also dependent on the frequency of occurrence of the 
particular anomaly and is improved by regularly providing crews with information 
about in-service incidents. However, the number and the type of manifestation (ECAM 
messages, speed changes, etc) linked to erroneous speed indications makes training 
and exhaustive information for pilots impossible (see also paragraph 1.17.1.4.2). 

In the case of the accident, the crew did not associate the loss of displayed speeds 
and the associated procedure. This may be explained by the difference between the 
symptoms that appeared during the training session that they had followed a few 
months previously and those that appeared during the event. In particular, the high 
number of ECAM messages that the PNF called out should be compared with the 
absence of messages in the training session scenario. 

In the absence of a constructed action plan, the dynamic management of a situation 
becomes reactive or even random, with no anticipation. The increase in the level 
of emotion, which reduces the ability to recall information, leads to a return to the 
simple and basic rules in executing tasks in an unexpected situation. 

(21)It is not 
possible to know 
whether or not 
the crew could 
have determined 
the number of 
sources lost.



F-GZCP - 1st June 2009
176

Thus, having identified the loss of airspeed information, the PNF turned his attention 
to the ECAM, undoubtedly in an attempt to refine his diagnosis and to monitor any 
actions displayed. He started to read the messages, and consequently called out the 
loss of autothrust and the reconfiguration to alternate law. The successive display of 
different messages probably added to the confusion experienced by the crew in its 
analysis and management.

        

In the absence of a specific message expressing detection of unreliable speed by the 
systems, the crew was unable to identify any logical link between the symptoms 
perceived and these ECAM messages. The impression of an accumulation of failures 
created as a result probably did not incite the crew to link the anomaly with a particular 
procedure, in this case the “Vol avec IAS douteuse” procedure. 

The disabling of the THRUST LOCK function by the PF indicates that he was searching 
for information. The PF may therefore have been overloaded by the combination of 
his immediate and natural attempts to understand the situation that was added to 
the already demanding task of handling the aeroplane.  

Meanwhile, the PNF turned on the wing anti-icing system, after reading the ECAM, 
which suggests that at this point he may have considered there was a severe icing 
problem. The sound of ice crystals hitting the windshield, considered as rain by other 
crews, may have supported this perception of an associated risk.

The symptoms perceived may therefore have been considered by the crew as 
anomalies to add to the anomaly of the airspeed indication, and thus indicative of 
a much more complex overall problem than simply the loss of airspeed information.

2.1.2.5 Attempt to control the flight path

After reading the ECAM messages, which provided no apparent assistance to the 
crew, the PNF’s attention was drawn for a period of twelve seconds to the PF’s 
control of the flight path. The flight director indications reappeared on the PFD with 
a change of longitudinal mode to vertical speed, for the first time different from 
the cruise altitude track or capture mode. The crew never formalised this change of 
mode. The  longitudinal crossbar first indicated a pitch-down order with which the 
PF’s inputs were consistent. 

The PNF detected the climb based on observation and reasoning (“according to all 
three you’re climbing”), which indicates the beginning of a loss of confidence in the 
instrument readings. In particular, he asked the PF to stabilise, to pay attention to 
the airspeed and to descend. His instructions were imprecise insofar as they did not 
give the PF a firm objective (e.g. maintain altitude or adopt a specific pitch attitude); 
however, they do appear to have been essential and sufficient for a short-term 
management of the situation.

The PNF’s intervention prompted the PF to apply inputs that reduced the pitch 
attitude, which had exceeded 10 degrees. Although the PF agreed that the objective 
should be to lose altitude, his inputs maintained the aeroplane on an ascending flight 
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path.  The crossbar then indicated a pitch-up input, which did not stimulate him to 
make sufficient pitch-down inputs to satisfy the PNF’s request. On his side, the PF 
checked the position of the thrust levers (“We are in, yeah, we are in climb”) then six 
seconds later reduced the thrust. It is possible that this thrust reduction was due to:

 � Noticing that the thrust delivered was at maximum;
 � His desire to avoid getting into an overspeed situation;
 � His desire to reduce the aeroplane’s rate of climb, or even to descend, as the PNF 

had requested a few seconds previously.

The PNF had noticed the need to stabilise the flight path, and the need for moderate 
aeroplane handling inputs. He probably considered that the reduction in pitch and 
the vertical acceleration sensed was a sufficient sign that the PF would correct the 
flight path to allow him to devote himself once again to identifying the failure.

2.1.2.6 Return to identifying the failure

Since no action or procedure had been displayed on the ECAM, the PNF took the 
decision unilaterally to set the AIR DATA selector to “F/O on 3”. 

It is possible that he had linked the loss of airspeed information on the right-side 
PFD to a loss of the ADR providing this information. In so doing, he may have been 
drawing on an analogy with one of the actions recommended in several procedures 
for dealing with an ADR(22) problem or icing(23). This action appears to show that 
the PNF was attempting to provide the PF with valid information. He also actuated 
the ATT/HDG rotary switch and called out this action (“I’m putting you in ATT… “). 
This change of inertial source, which with hindsight was not necessary, may indicate 
that his diagnosis of the failure was not completely defined. For him, the airspeeds 
indicated were inconsistent; he may not have excluded the possibility, however, that 
the inertial information was also inconsistent. In view of his doubts and the urgency of 
the situation, he may have thought it wise to change the two sources of information. 

In any event, this change of inertial and speed source resulted in the involuntary 
lengthening the invalidity of the speed displayed on the PF’s PFD, where the speed 
on the ADR 2 was on the point of becoming valid again.

After changing the ADR source, the PNF’s “what is that” appears to indicate his total 
incomprehension faced with the result of this action, since the speed displayed on the 
right side was still erroneous. He appeared at this point to have been overwhelmed. 
Recalling the Captain to the flight deck became his top priority; his first attempt to 
call him occurred two seconds before the STALL 2 warning triggered.

It should be noted that, during this forty-six second period between the autopilot 
disconnection and the STALL 2 warning, the C-chord warning sounded for a total 
duration of thirty-four seconds, thirty-one seconds of which as a continuous alert, and 
the STALL warning sounded for two seconds. The C-chord alert therefore saturated 
the aural environment within the cockpit. It was not cancelled by the crew. This aural 
environment certainly played a role in altering the crew’s response to the situation.

At 2 h 10 min 47, one of the crew members cancelled the Master Caution warning that 
had been active since  2 h 10 min 05, that’s to say for more than 40 seconds. To do this 
he had pressed the push-button on the FCU, which was illuminated in amber at that 
time.  At that moments, the C-Chord warning had been active for about 27 seconds. 

(22)NAV ADR 2 
Fault, NAV ALTI 
DISCREPANCY, 
and NAV IAS 
DISCREPANCY 
procedures.
(23)Anti Ice F/O 
PROBES HEAT, 
Anti ICE F/O 
PITOT or L(R) STAT 
or AOA HEAT 
procedures.
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This warning is cancellable by pressing the Master Warning push-button, which is not 
illuminated, located just next to the Master Caution push-button.

It is possible that this action of pressing the Master Caution was a reflex action to 
the fact that the button was illuminated. It is however also conceivable that this was 
done with the intention of cancelling the C-Chord warning in order to relieve the 
saturated aural background in the cockpit. 

In general, the failure of both crew members to formalise and share their intentions 
made the identification and resolution of the problem more difficult.

2.1.3 From the triggering of the STALL 2 warning until the end of the flight

2.1.3.1 Safety Expectations 

When the angle of attack protections provided by the normal flight control law are 
no longer available, the approach to stall is indicated to the crew by:

 � The aural ”Stall” warning, associated with the MASTER WARNING indicator light;
 � The appearance of the red and black strip on the speed tape (Vsw);
 � Buffet.

When the calculation of the Vsw speed is not available, this speed is no longer 
displayed on the PFDs. No visual information is then displayed that is specific to the 
approach to stall(24).

The aural characteristics of the warning (a synthetic voice saying “Stall, stall” and the 
cricket), or the “deterrent buffet” vibrations, are thought to be so intrusive that they 
will make the crew realise that their understanding of the situation is mistaken, and 
will call their attention to the fact that the aeroplane is approaching the limits of the 
flight envelope.

The perception of one or both of these signals must prompt PF’s to recall the overall 
model associated with the stall phenomenon: 

 � Identification of the warning or buffet (i.e. making sense of the perceived signals); 
 � Acceptance of the diagnosis of a stall, which involves acknowledging the 

credibility of the signals in a situation in which they are unexpected;
 � Recollection and application of an associated procedure, the underlying principles 

of which are taught in the first few hours of basic pilot training. 

It is also expected that PNF’s identify the signs of the approach to stall, that they 
accept the associated diagnosis, and that they check that the PF’s’ inputs are correct.

The crews’ expected reaction time is of the order of a few seconds. Examination of 
the documentation has not brought to light a technical call-out associated with the 
implementation of actions.

Other than during initial training, as mentioned above, a pilot is unlikely to encounter 
an approach to stall more than a few times during his or her career, and is even less 
likely to have to deal with a fully-developed stall. The safety model thus assumes that 
the abilities to identify the signals indicative of the approach to stall, and to recall 
the expected actions, remain sufficient over time, despite the low levels of exposure.

(24)The Master 
Warning 
pushbutton lights 
up, but does not 
constitute specific 
information about 
the approach of 
stall since it is 
associated with 
many emergency 
situations.



F-GZCP - 1st June 2009
179

2.1.3.2 Exit from the flight envelope

The STALL 2 warning triggered at 2 h 10 min 51 but did not elicit any response 
from the crew. Even though the stall warning had been sounding for 9 seconds, the 
aeroplane climbed above the propulsion ceiling with the vertical speed still high, 
and with a flight path speed that was dropping as a result of this vertical speed. At 
this point, only descent of the aeroplane through a nose-down input on the sidestick 
would have made it possible to bring the aeroplane back within the flight envelope.

The rapid reduction in speed was accompanied by an increase in the angle of attack. 
The lift ceiling, at the Mach at which the aeroplane was flying at that time, was broken 
a few seconds after breaking through the propulsion ceiling. Due to its momentum, 
the aeroplane continued to climb: the aeroplane’s kinetic energy was converted 
into potential energy until the point was reached when the aeroplane unavoidably 
started to descend. The PF was still applying nose-up inputs and the angle of attack 
continued to increase. Even with the engines at the TOGA thrust setting, the drag 
generated by this high angle of attack was so high as to prevent the aeroplane 
from accelerating. 

Subsequently, the position of the sidestick, maintained in its nose-up or neutral 
position, continued to exacerbate the situation and made the recovery uncertain, 
even impossible.

2.1.3.3 Reactions of the crew to the stall warning

Four seconds before the triggering of the STALL 2 warning, the flight director 
crossbars reappeared on the PFDs. The vertical mode engaged was V/S mode with 
a target value of +1,400 ft/min. The modes displayed on the FMA were never called-
out by the crew. The horizontal bar then indicated a slight nose-up order compared 
with the aeroplane symbol. The PF’s nose-up input caused the increase in the angle 
of attack and triggered the stall warning. At the instant when the STALL 2 warning 
was triggered, at 2 h 10 min 51, the aeroplane’s pitch attitude was 7 degrees, and 
increasing. A few seconds later, buffet started.

The crew never referred either to the stall warning or the buffet that they had likely 
felt. This prompts the question of whether the two co-pilots were aware that the 
aeroplane was in a stall situation. In fact the situation, with a high workload and 
multiple visual prompts, corresponds to a threshold in terms of being able to take 
into account an unusual aural warning. In an aural environment that was already 
saturated by the C-chord warning, the possibility that the crew did not identify the 
stall warning cannot be ruled out.

2.1.3.3.1 PF’s reactions 

Even if the PF’s acceptance (or rejection) of a stall diagnosis was never verbalised, 
even though some of his actions could be considered to be consistent with those 
recommended in an approach to stall situation: setting the thrust levers to the 
TOGA detent, or his concern with keeping the wings horizontal. On the other hand, 
in the absence of airspeed information known to be reliable, it is possible that the 
PF thought that the aeroplane was in an overspeed situation, notably due to his 
interpretations of several clues:
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 � The aerodynamic noise,
 � The buffeting, that he might have interpreted as being due to high speed,
 � The speed trend arrow on the PFD, which at that time indicated acceleration. 

Some of the PF’s actions may be interpreted as indicative of a perception of a risk 
or of a diagnosis of overspeed. Firstly, the PF reduced the thrust during the seconds 
preceding the activation of the STALL 2 warning and the onset of buffet. Secondly, 51 s 
after the triggering of this warning, the PF said “I have the impression we have speed” 
then moved the thrust levers to the IDLE detent. He reformulated his impression 
a few seconds later, combined with an attempt to extend the speedbrakes.

Other factors which may have prompted the PF to fear an overspeed situation were:

 � The display on the ECAM (max speed 330/.82) combined with the reconfiguration 
to alternate law which may have been read;

 � The fact that, in cruise, the upper red strip on the speed tape (MMO) is about ten 
knots above the current speed, whereas VLS is barely visible at the bottom of the 
tape (thirty knots less);

 � The dangers associated with overspeed situations embedded in the collective 
consciousness of pilots.

Nevertheless, the PF was also confronted with the stall warning, which conflicted 
with his impression of an overspeed. The transient activations of the warning after 
the autopilot disconnection may have caused the crew to doubt its credibility. 
Furthermore, the fact that the flight director was advising a nose-up attitude may 
have confirmed the PF’s belief that the stall warning was not relevant. During previous 
events studied, crews frequently mentioned their doubts regarding the relevance of 
the stall warning (see 1.16.8.4).

The application of maximum thrust was probably the consequence of the perception 
of the stall warning. However, the PF may have assimilated the triggering of the 
warning as a consequence of the reduction in thrust, which he had applied four seconds 
earlier; he should then have applied full thrust to return to the earlier situation. 

A few seconds later, the PF said “I’m in TOGA, right?”. Either he was unsure whether 
or not he had set the thrust controls to the TOGA detent, as he intended, or he did 
not understand why this action was ineffective in clearing the stall warning. This 
second case might therefore indicate that the PF had built an erroneous mental 
representation of the aeroplane’s flight model, and that he had hoped that he could 
resolve the situation by applying TOGA thrust at high altitude and a pitch attitude of 
twelve degrees, a strategy similar to that recommended at low altitudes. The fruitless 
result of his actions possibly heightened his mistrust of the warning.

Finally, although the PNF had called out the reconfiguration to alternate law when 
reading the ECAM, and even though the indicators of the loss of protection should 
have been displayed on the PFD (SPD LIM and an amber cross in roll and yaw), it is 
possible that the PF was not fully aware of this reconfiguration and of what it implied. 
He may therefore have embraced the common belief that the aeroplane could not 
stall, and in this context a stall warning was inconsistent. 
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The pitch attitude oscillations, in the seconds following the activation of the stall 
warning, reveal that the handling of the aeroplane was clearly very difficult and 
probably demanded the PF’s full attention. During this phase, the aeroplane 
symbol on the PFD was close to, but on average slightly above, the flight director 
horizontal bar. 

The PF likely attempted to track this crossbar as it changed without having integrated 
the change of longitudinal engaged mode.  Indeed, the charged emotional 
factor combined with the workload prompted the PF to trust the flight director, 
independently of any other parameter: he may have considered the flight director 
crossbars as means of maintaining the cruise level.

Moreover, the flight director displays could have prompted him to command a 
positive pitch angle, of about 12.5°. This value appears in the stall warning procedure 
for the take-off phase. It is possible that, even though he did not call it out, the PF 
had recalled this memorised value and then had clung to this reference without 
remembering that it was intended for a different flight phase. The conjunction of this 
remembered value and the flight director displays may have constituted one of the 
few (and maybe even the only) points of consistency in his general incomprehension 
of the situation

Thus, it seems likely that the flight director exerted an influence. The PF could 
have been tempted to adhere to it without validating the information presented. 
The concurrence of the information from the FD with the stall warning may have 
undermined the credibility of the actions to take in response to the warning. 

Note: The “Vol avec IAS douteuse” procedure recommends disabling the FD, to prevent it from 
presenting cues that could potentially be irrelevant.

The flight director displays, the doubt regarding the relevancy of the aural stall 
warning and the identification of the possibility of an overspeed situation did not 
allow the PF to make a correct diagnosis. He therefore implemented a combination of 
antagonistic actions to respond to both an overspeed situation (reduction in thrust, 
nose-up inputs) and to a stall situation (application of maximum thrust). 

2.1.3.3.2 PNF’s actions

When STALL 2 warning triggered and buffet appeared, the PNF was faced with an 
increasing incomprehension of the situation. 

The PNF’s strategy was then above all to call the Captain, which occupied a large 
part of his resources. Since he was anxiously waiting for him to return, it is possible 
that the phenomenon of attention selectivity reduced his ability to perceive the 
STALL warning.

If he had in any event perceived the approach-to-stall situation and taken into account 
the flight path corrections in the previous sequence, it would seem astonishing 
that the PNF’s primary concern would be that of keeping the wings horizontal then 
checking the engines’ thrust setting. He too may have doubted the reliability of 
the warning.
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Whatever the case, the PNF’s attention was distracted from the key parameter at 
that time, that’s to say the aeroplane’s pitch attitude, which was inappropriate at 
that altitude.

At about 2 h 11 min 38, after the PF said “I don’t have control of the plane at all“, the 
PNF called out “controls to the left“, took priority and made two lateral left inputs to 
the stop. The aeroplane was then rolling to the left. The PF immediately took back 
priority and kept his sidestick at the stop to the left. This priority takeover by the PF 
could not be explained but bears witness to the de-structuring of the task-sharing. 

2.1.3.4 Return of the Captain

The Captain certainly noticed the vibrations linked to buffet as well as the pitch 
attitude of about 15 degrees, and heard the stall warning while he was approaching 
the cockpit. Nevertheless, on his return, he made no reference to this. The stall 
warning became intermittent and interwoven with the C-chord alert. These two 
warnings, combined with the ambient noise and the voices of his colleagues, made 
a saturated aural environment, which was difficult for the Captain to understand, 
especially since some of his attention was certainly focused on reading and analysing 
the instruments.

The two co-pilots informed him that they had lost control. The PNF stated that he 
did not understand the situation and that they had “tried everything”. The general 
incomprehension made it difficult to give a more precise description of the recent 
events. When the Captain returned to the cockpit, the aeroplane was in a rapid 
descent, though at an altitude close to the cruise level it was at when he had left. 
Under these conditions, and not having experienced the complete sequence of 
events, it was very difficult for the Captain to make a diagnosis.   He would have 
needed to question the co-pilots about the sequence of events, an approach that 
was blocked by the urgency of the situation and the stress conveyed by the PNF’s 
tone of voice.

Subsequently, his interventions showed that he had also not identified the stall: 
the multiple starts and stops of the stall warning certainly contributed to make his 
analysis of the situation more confused. He then seemed to have based himself on 
the pitch attitude and thrust parameters to analyse the flight path.

2.1.3.5 End of the flight

At about 2 h 12, descending though FL 315, the aeroplane’s angle of attack was 
established around an average value of about 40 degrees. Only an extremely 
purposeful crew with a good comprehension of the situation could have carried out 
a manoeuvre that would have made it possible to perhaps recover control of the 
aeroplane. In fact, the crew had almost completely lost control of the situation.

Up until the end of the flight, no valid angle of attack value was less than 35°. 

2.2 Pilot Training and Recurrent Training



F-GZCP - 1st June 2009
183

2.2.1 Manual aeroplane handling and functional representation of flight

At 2 h 10 min 05, when the autopilot disconnected, the aeroplane was flying in cruise 
close to the upper limit of its flight envelope, autothrust was trimmed back slightly 
to adjust the cruise Mach to the value requested by selecting 0.80 on the FCU. 

In the first minute after the disconnection of the autopilot, the aeroplane exited 
its flight envelope. Neither of the two crew members had the clarity of thought 
necessary to take the corrective actions. However, every passing second required 
a more purposeful corrective piloting input. 

After autopilot disconnection the nose-up inputs produced a load factor of up to 
1.6  g, that’s to say 1.4 g if the turbulence component is excluded. Maintaining a 
high pitch attitude first resulted, when the aeroplane had sufficient speed, in a fast 
climb speed (up to 7,000 ft/min) and then in a rapid increase in the angle of attack. 
At high altitude, such a high climb speed can only be achieved by converting kinetic 
energy to potential energy, that’s to say at the expense of a rapid decrease in flight 
path speed.

In addition, the thrust value of 84% N1 was lower than the thrust necessary for level 
flight (95% N1) due to the reduced mach ordered a few seconds before the autopilot 
disconnection, then the change to “Thrust Lock” mode at 2 h 10 min10. The thrust was 
readjusted towards CLIMB at 2 h 10 min 23 even though the aeroplane was already 
climbing rapidly with a vertical speed of 6,000 ft/min.  

These factors induced a rapid reduction in the kinetic energy and brought the 
aeroplane above its lift ceiling, at the Mach level at which it was then flying. This rapid 
exit from the flight envelope was not understood and thus not anticipated by the 
pilots.

In the absence of reliable speed indication, an understanding of the physics of high-
altitude flying, gained through training in the fundamental principles of energy 
conversion, equilibriums of forces, and lift and propulsion ceilings, could have 
considerably helped the pilots to anticipate the rapid deterioration in their situation 
and to take the appropriate corrective measure in time: initiate a descent.

It should also be noted that overspeed was a strong risk in the PF’s mind. This was 
the consequence of the fact that, in theoretical teaching (notably ATPL), the risk of 
“high speed stall” is presented equally with the more classic “low speed stall”. Even 
though the latter is quite well known to pilots, excursions beyond VMO/MMO are not 
demonstrated in training. Furthermore, vibrations (linked to buffet) are erroneously 
associated with overspeed.

Air France’s Aeronautical Manual (MAC) describes in great detail, over 38 pages, 
the physics of high-altitude flight with real cases. This knowledge is also included in 
the theoretical teaching that is supposed to be provided at an advanced stage in the 
training of a future airline pilot (ATPL theory, type rating performance). The climbing 
flight path that was initially more or less deliberate on the part of the crew is likely 
a clue to the insufficient assimilation of these theoretical notions.
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2.2.2 CRM training and exercises

The task-sharing by the two co-pilots appears to have been well defined, beginning 
with their initial reactions to the autopilot disconnection: the PF concerned himself 
with handling the aeroplane, and the PNF with dealing with the failure. By identifying 
that speed information had been lost, the two co-pilots were able to define a shared 
representation of the situation. However, this was not sufficient to enable them to 
construct a joint action plan to manage the situation. The PNF’s reading of the ECAM 
messages, in a broken and hesitant manner, may have drawn the PF’s attention to 
the ECAM, to the detriment of the piloting task. With the exception of the PNF’s 
intervention on the control of the flight path, the two co-pilots failed to communicate, 
in a clear and precise manner, the intentions and objectives that motivated the tasks 
they performed. Better communication would have resulted in closer coordination. 
Faced with the difficulties of managing the situation, the two co-pilots fairly quickly 
focused on their tasks to the detriment of communicating essential information to 
each other in an effective manner. The loss of coordination and the willing but chaotic 
cooperation in managing the surprise generated by the autopilot disconnection led 
quickly to the loss of cognitive control of the situation, and subsequently to the loss 
of physical control of the aeroplane.

Overall, CRM thus gradually deteriorated and the analysis of the event highlights its 
fragility in this context of unexpected and unfamiliar dynamic situations. CRM training 
courses are provided throughout the career of an airline pilot. Their objective is to 
develop the acquisition of non-technical skills (NOTECHS) required for the correct 
general functioning of a crew.  Even though the regulations make mandatory a 
CRM evaluation during the annual line check and first pilot-in-command check, this 
evaluation faces the difficulty inherent in measuring CRM performance objectively. 

The absence of a reference system and methodological heterogeneity and evaluation 
criteria amongst the instructors, whose performances were variable and not well 
harmonized, did not make it possible to evaluate and compare the crews’ CRM skills 
objectively. This shortcoming could nevertheless be overcome by setting instruction 
standards that would allow objective evaluation and comparison of crews’ CRM skills.

2.2.3 Augmented crews

The investigation did not bring to light any information that might reasonably call 
into question the strategic management of the flight path by the crew of flight AF 447 
during its passage through the ITCZ, prior to autopilot disconnection. Analysis has 
not revealed any particular deficiency in the practical (or formal) transmission of 
information when the Captain was relieved, whose correction would have changed 
the course of subsequent events. However, the Captain did leave the cockpit for a rest 
period without having formally designated the PF as his relief, and without having 
replied to his concerns regarding the ITCZ and the turbulence. This contributed 
towards raising this co-pilot’s charged emotion levels for the remainder of the flight: 
he found that he had been given all the responsibilities of a relief Captain, but did 
not feel that he had all the information needed to make the right decisions, with the 
second, more experienced co-pilot.

The crew of two co-pilots left in the cockpit after the departure of the Captain were 
left with an uncertain strategy for the next phase of the flight. Furthermore, the crew 
also had some characteristics that were unfavourable to good resource management. 
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Indeed, in terms of total experience and experience on this type of aeroplane, the PF, 
designated implicitly by the Captain as his relief, was significantly less experienced 
than the other co-pilot. The latter also held a managerial position within the airline at 
its Operations Control Centre and, it may be assumed, was accordingly considered as 
an expert by his peers. This raises questions about the rationality of designating this 
co-pilot as the relief Captain. The difference in experience between the two co-pilots 
resulted in the PNF naturally taking over. The PF did not oppose this tendency. 
Without this generating any conflict, this take-over led rapidly, after the autopilot 
disconnection, to the inversion of the normal hierarchical structure in the cockpit. 
The  leadership role switched to the PNF, without the command function being 
formally and explicitly transferred.

The operator’s training programme does not give co-pilots the opportunity 
to systematically develop the mindset needed to perform the role of relief Captain 
aboard flights with augmented crews. This lack of CRM training specific to the role 
of a relief Captain could impair the synergetic response of a crew consisting of two 
co-pilots. Such a crew may therefore be less well prepared and able to implement 
cooperative management of an unexpected situation in the mid- and long-term.

2.2.4 Flight simulators

With regard to practical training relating to the notion of a stall warning, the only 
opportunities available to the two co-pilots to learn about stall were during their 
basic training, and then as part of one or two simulator sessions during their initial 
training for A320 type rating. These exercises were conducted at low altitude (FL100) 
with the focus on demonstrating and analysing the phenomenon, and with particular 
attention on the operation of the aircraft’s protections in normal law. In alternate law, 
the approach to stall exercise exposes the trainee to the stall warning in a situation 
in which it is expected, and the corrective actions to be performed are prepared in 
advance. The exercise lets the trainee experience the onset of the vibrations due to 
buffet, which confirms the stall phenomenon.

At high altitude, the margin between the normal angle of attack in cruise and the 
angle of attack that activates the stall warning is very small. Trainees who perform 
the exercise at low altitude note a reduction in speed compared with the reference 
values but are not sensitized to the proximity of the angle-of-attack threshold at 
which the warning is triggered. 

The demonstrative nature of the exercises undertaken does not enable the crew to 
appreciate the startle effect generated by the stall warning, nor the reflex actions on 
the controls that may be induced.

Current training practices do not fill the gap left by the non-existence of manual flying 
at high altitude, or the lack of experience on conventional aeroplanes. Furthermore, 
they limit the pilots’ abilities to acquire or maintain basic airmanship skills.

More generally, the exercises performed in a simulator follow a predetermined 
scenario, and even if there are variations from one session to the next, the trainees are 
more or less familiar with the failures they will have to deal with. In this respect, the 
training scenarios may significantly differ from the reality of an in-flight failure. The 
startle effect associated with this operational reality is destabilising and generates 



F-GZCP - 1st June 2009
186

stress. It may have a direct impact on the correct execution of a manoeuvre, or 
on the ability of a crew to diagnose the problem and then recover the situation. 
However, the conditions in which training is delivered are not conducive to giving 
instruction in these environmental factors, and thus to the subsequent application 
in service of the non-technical skills necessary for the correct management of an 
unexpected situation.

The crew of flight AF 447 did not link the disappearance of speed information and the 
various warnings and associated ECAM messages to the “IAS douteuse” procedure. 
The loss of airspeed information can occur for various technical reasons, in flight 
phases with differing risks generated. Consequently, it is complex to recreate in the 
simulator all the failure modes that lead to this situation. 

Furthermore, this variability in failure modes produces very different effects in the 
cockpit. Indeed, the loss of speed information can be manifested by the triggering of 
a large number of warnings and ECAM messages, but also (as during crew training on 
a simulator) by a “simple” inconsistency of parameters, without any warnings.

The crews performed the training in compliance with a known scenario, but did not 
have the opportunity to consider the consequences of the startle effect on their 
individual behaviour, nor its potential to disrupt the ability of the crew to work as 
a team.

Thus the difficulty, or even the impossibility, of reproducing on a simulator both the 
complexity and variability of the failure signals, combined with the lack of a startle 
effect for a known scenario, prevented the training from being appropriate to the 
situation actually encountered.

2.2.5 Aeroplane behaviour in reconfiguration laws

Alternate 2B law represents a specific case of flight control law reconfiguration. In 
fact, it occurs when the flight control computers have rejected the three ADR’s. It 
has the specific characteristic of being associated with the loss of computation and 
display of the limit speeds. The high and low speed protections that exist in normal 
law, and sometimes in a reduced manner (high and low speed stability) in alternate 
law, are lost. There is however no explicit indication, apart from the red SPD LIM flag 
next to the speed tape (on the ECAM for example), of the level of alternate law that the 
aeroplane is in. The ECAM message associated with the reconfiguration to alternate 
law, of whatever type, indicates “PROT LOST”.  However, not all of the protections 
are lost, since the load factor protection remains available, and reduced protections 
can also exist. The precise identification of the consequences of a reconfiguration in 
alternate law is thus complicated.

In alternate 2 law, the longitudinal control law remains a load factor law and the 
lateral control law is a direct law. In the specific case of alternate 2B law, some 
coefficients used in the longitudinal flight control law become speed-independent 
and are set for the maximum speed for the aeroplane configuration (330 kt in clean 
configuration). This hardly modifies the behaviour of the aeroplane in comparison 
to normal law, but can nevertheless induce an unusual response dynamic when the 
aeroplane has an abnormally low speed for the configuration. In relation to lateral 
control, the direct law implies that a pilot control input is necessary to counter any 
possible roll tendency (for example linked to a crosswind component). There is no 
aileron trim.
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Thus, in case of autopilot disconnection in a zone with turbulence, as was the case 
during the accident flight, a pilot input, even if moderate, can quickly become necessary 
to control the roll. It appears in fact that maintaining the wings horizontal represents 
a basic piloting objective for an airline pilot, especially in a cruise situation. On the 
other hand, maintaining the load factor law according to the longitudinal axis makes 
it possible not to have to make inputs for the aeroplane is practically maintained in 
level flight. There must really be a high level of turbulence for the aeroplane to be 
significantly destabilized. Piloting inputs must therefore be moderate and essentially 
on the lateral axis. In the case of the accident, the PF tried to control the roll, even if 
the amplitude of his inputs finally maintained these movements. The relatively strong 
nose-up inputs that he applied at the same time may have, among other hypotheses, 
have originated in a certain difficulty in integrating the various types of control laws 
and thus the difference in the type of handling inputs to adopt between the two axes.

When there are no protections left, the aeroplane no longer possesses positive 
longitudinal static stability even on approach to stall. This absence specifically results 
in the fact that it is not necessary to make or increase a nose-up input to compensate 
for a loss of speed while maintaining aeroplane altitude. This behaviour, even if it 
may appear contrary to some provisions in the basic regulations, was judged to be 
acceptable by the certification authorities by taking into account special conditions 
and interpretation material. Indeed, the presence of flight envelope protections 
makes neutral longitudinal static stability acceptable. 

However, positive longitudinal static stability on an aeroplane can be useful since it 
allows the pilot to have a sensory return (via the position of the stick) on the situation 
of his aeroplane in terms of speed in relation to its point of equilibrium (trim) at 
constant thrust. Specifically, the approach to stall on a classic aeroplane is always 
associated with a more or less pronounced nose-up input. This is not the case on 
the A330 in alternate law. The specific consequence is that in this control law the 
aeroplane, placed in a configuration where the thrust is not sufficient to maintain 
speed on the flight path, would end up by stalling without any inputs on the sidestick. 
It appears that this absence of positive static stability could have contributed to the 
PF not identifying the approach to stall.

2.3 Ergonomics

2.3.1 ECAM

At 2 h 10 min 05, in response to the obstruction of the Pitot probes by ice crystals, 
various monitoring mechanisms triggered almost instantaneously.

Thus, the FMGECs detected differences between the various speeds measured and the 
flight control computers (FCPC/PRIM) identified a sudden drop in several measured 
speeds, leading to the reconfiguration to alternate law.  This monitoring, specific to 
the FCPCs, is designed to detect the obstruction of several Pitot probes.

The crew is only informed of the consequences of the triggering of these monitoring 
mechanisms: disconnection of the AP and of the ATHR, transition to alternate law 
etc. No failure message is provided that identifies the origin of these other failures: in 
particular, the rejection of the ADR’s and of the speed measurements.
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The crew thus took control of the aeroplane, some of whose systems had identified 
inconsistencies in the measured speeds, though no ECAM message enabled a rapid 
diagnosis of the situation to be made initiating the appropriate procedure. However, 
during their training and exercises, crews are told to read the ECAM as soon as the 
flight path has been controlled, since this should facilitate the analysis of the situation 
and allow them to organise a course of action to deal with the failures.

Between the autopilot disconnection and the triggering of the STALL 2 warning, 
numerous messages were displayed on the ECAM. None of these messages helped the 
crew to identify the problem associated with the anomalous airspeed. Furthermore, 
the management of the priorities of the various messages resulted in a rapid change-
over of the information displayed, which further complicated the crew’s analysis and 
understanding of the situation. 

The reading of the ECAM by the PNF, and possibly also by the PF, was time-
consuming and used up mental resources to the detriment of handling the problem 
and monitoring the flight path.

2.3.2 Operation of the flight directors

When an unreliable airspeed event occurs, the automatic control features (autopilot 
and autothrust) disconnected automatically. The crew could only then re-engage 
them by pressing on a dedicated push-button on the FCU. The flight directors 
behaved differently, insofar as the cross bars disappeared from the PFD, even though 
the flight directors were still engaged. 

The consequence of such absence of an automatic disconnection was that the cross 
bars disappeared and reappeared several times as changes occurred in the various 
parameters used and their corresponding monitoring mechanisms, without requiring 
specific action of the crew. The disconnection of the flight directors is part of the 
“IAS douteuse” emergency manoeuvre (Air France) and in the “Unreliable airspeed” 
(Airbus) procedure, as are the autopilot and autothrust disconnection.  This approach 
is probably prompted by the desire to avoid erroneous commands being issued, 
resulting from the loss of consistent airspeed information. 

However, analysis of previous events shows that the AP and the A/THR always 
disconnected automatically(25). The flight directors always disappeared (at least 
temporarily) when the A/THR disconnected, but reappeared automatically when the 
operating conditions were regained, whereas the re-engagement of the AP or of the 
A/THR required action by the crew. This difference in behaviour between the AP and 
the A/THR on the one hand, and the FDs on the other, probably played a role in the 
accident as a result of the conjunction of several effects:

 � The credibility of the cross bars is strengthened by their disappearance followed 
by their re-appearance: if they appear, it implies that the indications that they 
display are valid;

 � Since they attract the crew’s attention (green colour and presentation in the 
centre of the PFD), the presence of the cross bars could have influenced the 
actions of the PF, notably in respect to his reaction to the stall warning;

 � It is only possible to be aware of the changes in active modes (when the cross 
bars reappear) by reading the FMA, which is probably difficult to do in a high 
workload situation induced by piloting or failure management tasks.

(25)Except in 
certain cases, in 
which the crew 
had already 
disconnected 
the A/THR after 
entering a zone 
of turbulence.
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One may therefore question the suitability of the automatic reappearance of the 
flight directors once they have disappeared.

2.3.3 Stall warning (operation and identification)

In alternate or direct law, the triggering threshold for the stall warning varies with 
the Mach, and experience has shown that it can easily be reached in cruise phase if 
the aeroplane enters a zone of moderate turbulence. In these cases, the warnings are 
triggered by a local increase in the angle of attack; they are therefore transient and 
are generally expressed as truncated warnings (a synthesised voice sounds saying 
“STALL, STALL”, sometimes incompletely). Previous events that have been studied 
(stall warning triggered in the context of a speed anomaly at cruise speed) show, 
however, that other crews have not reacted as expected to the proximity of the 
stall and had a tendency to consider the warning as spurious. For this reason, the 
behaviour of the AF 447’s crew should be considered as liable to be reproduced as 
regards the lack of reaction to the STALL 1 warning.

These incidents are thus transient phenomena which only trigger a warning because 
the normal law protections are lost. They generate stress, but despite this the only 
conclusion that can be reached is that flight safety is not compromised, in any case 
as long as the flight conditions (airspeed, pitch attitude, thrust) are maintained. It 
would therefore appear that, under these conditions, the purposeful and immediate 
reaction of the crew that this warning ought to generate is not necessary; such 
spurious triggering may be considered as inappropriate and likely to impair the 
overall credibility of a warning which is almost never encountered by crews during 
type rating, in flight or during training. 

Furthermore, in alternate or direct laws as featured in the manufacturer’s manual 
(FCOM), the stall warning is described as being the combination of the aural warning, 
the illumination of the Master Warning light on the FCU and the indication on the 
speed tape, displayed as a red and black strip (Vsw). No clear mention of the buffet 
phenomenon is ever made. However, illumination of the Master Warning generally 
occurs for a different reason. In the absence of any Vsw display on the PFD speed 
tape, only the aural warning is unambiguous. The salience of an aural warning 
not reiterated visually in symbolic form, on a very “visual” aeroplane, is doubtless 
insufficient. However, irrespective of the ergonomics of the warning, it is likely that 
the presentation of information that provides an overview of the aeroplane’s situation 
(angle of attack, energy balance (kinetic and potential), flight envelope) would help 
pilots to “make sense” of the warning and to take the appropriate corrective action 
in time. 

To summarise, the following factors tend to diminish the performance expected from 
many crews:

 � Minimal exposure during type rating and no exposure during recurrent training 
(theoretical and practical) to the stall phenomenon, to the stall warning, to buffet 
and to the application of the associated procedure;

 � The lack of any description of the functioning of the stall warning (a structure 
diagram or indications of threshold levels, for example) in the documentation;

 � Insufficient awareness of the proximity of the stall angle of attack when cruising 
at high altitude, a possible consequence of insufficient understanding of the 
principles of flying at high altitudes and/or the unsuitability of the training;
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 � The need to detect the loss of the automatic protections and to integrate the 
consequences of this loss, particularly the fact that the stall warning is then likely 
to be triggered and that, if it does, it must be taken into consideration;

 � The lack of a suitable visual device; the addition of a visual signal to supplement 
the audible signal (warning) and the proprioceptive signal (the buffet), would 
provide the crew with additional information to enable them to “escape” from an 
erroneous understanding of the situation;

 � The possibility that the FD is presenting handling instructions that are contrary to 
the expected pilot actions for an approach to stall.

A few seconds after the transition to alternate law, the stall warning sounded briefly, 
even though the PF’s inputs should have made this warning sound for several 
seconds. The reason for this is the drop in the measured airspeeds, some of which 
fell temporarily to below 60 kt, while the angle of attack reached 40°. Furthermore, 
the drop in measured airspeeds to values of less than 60 kt during the stall caused 
the repeated activation and deactivation of the warning which may have made it 
considerably more difficult for the Captain to effectively analyse the situation on his 
return to the cockpit. However, it was doubtless already too late, given the aeroplane’s 
conditions at that time, to recover control of it. There can be other conditions where 
airspeed measurements (severe icing, obstruction by particles) may be disrupted and 
for which it might be beneficial to have a stall warning permanently in operation.

Until the end of the flight, the angle of attack values changed successively from valid 
to invalid. Each time that at least one value became valid again, the stall warning 
re-triggered and each time the angle of attack values were invalid, the warning 
stopped.  Several nose-down inputs caused a drop in the pitch attitude and the angle 
of attack, whose values then became valid, such that a clear nose-down input resulted 
in the triggering of the stall warning. It appears that the PF reacted, on at least two 
occasions, with a nose-up input, whose consequences were an increase in angle of 
attack, a drop in measured speed and consequently stopping the stall warning. Until 
the end of the flight, no valid angle of attack value was less than 35°.

2.4 Operational and technical feedback

The investigation revealed that the operator, the manufacturer and the continuing 
airworthiness authorities had exchanged a great deal of technical information 
regarding events associated with the icing of Pitot probes by ice crystals. The resulting 
analysis notably led to the replacement of certain probes, the execution of wind 
tunnel tests and the issuing of airworthiness directives and memos for the attention 
of pilots.

The actions undertaken focused on reducing the risk of probe icing through the 
implementation of technical modifications. However, the concurrent existence 
of  an operational procedure associated with the loss of airspeed information led 
the  operator, the manufacturer and the authorities to consider that the risk was 
mitigated, as long as there was no significant excursion from the flight path during 
these known events. Thus, feedback from in-service events made it impossible 
to consider and analyse in advance the repeated failure to apply the unreliable 
airspeed  / “Vol avec IAS douteuse” procedure. As discussed in the section on 
crew training, the multitude of failure scenarios that can result in a loss of speed 
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information complicates the analysis for the crew, and makes it difficult to provide 
both exhaustive training and an effective mechanised approach to the application 
of the procedure. The type of scenario produced and the formulation of the memory 
items made it difficult to associate the manoeuvre with the situations encountered 
in in-flight situations. Consequently, although technically adequate, the details of 
the procedure continue to be understood to differing degrees by crews, who do not 
always consider their application necessary, and even sometimes consider them to 
be inappropriate at high altitude.

Although the certification of an aeroplane is based on the principle that a crew does 
not have exceptional skills, and has followed an appropriate training programme, 
no method is defined that would make it possible to define or verify the true 
appropriateness of a training programme. The (J)OEB evaluations conducted during 
the certification of the A330 did not result in the issuing of a training programme 
specific to this failure condition. Furthermore, this evaluation does not have a 
mandatory status.

In-flight experience thus made it possible to find a technical solution for reducing 
the risk of occurrence of a failure (modification of the probes). It did not, however, 
identify the fact that the operational aspects involved in the failure constituted a risk 
factor that had to be integrated.

Operational procedures nevertheless remain a key element in attenuating risks and 
a means of defence against human errors. It is however a fact that the level of detail 
and comprehension of procedures is an open issue. Specifically, standard operational 
procedures are not always followed or applied (for numerous reasons). Pilots may 
thus not be prepared for unexpected or unusual situations due to:

 � Procedures that are inappropriate to situations;
 � A workload that makes it impossible to apply procedures;
 � Procedures that are too numerous or too detailed.

In addition, a certain number of incidents are not reported in a way that is directly 
useable by aircrews, and only later analysis of the recorded data made it possible to 
bring to light the safety aspects.  The frequent lack of any immediate testimony or CVR 
recording, which is the direct consequence of imprecise notification on the part of 
crews, makes it difficult for the incident to be analyzed by safety liaison officer or the 
investigative authority, and thus improve safety. The same applies to the systematic 
operational analysis of human factors that should be undertaken by the manufacturer.  
Thus, though the quality process works in theory, in reality it is sometimes a failure. 
This non-optimal situation, even where identified by the authority, would give rise to 
no notifications, the process being acceptable from the regulatory perspective. What 
is more, the large number of ASR’s received by the authority, with a very variable 
level of severity, does not help sort them in terms of their relevance and thus renders 
their handling more uncertain.
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2.5 Oversight of the Operator by the national aviation safety authority 
(DGAC/DSAC)

Mastery of  safety mainly depends on processes (pro-active or reactive) that are 
developed, implemented and followed up by operators: flight crew incident reports, 
subsequent analysis of flight data and incidents, monitoring trends, etc. Oversight 
undertaken by the authority over operators is essentially regulatory: only the 
operators’ compliance with the requirements in force is checked. The authority also 
ensures, where possible, that the operator uses procedures that will identify any 
possible safety issues and remedy them. Since 1st January 2012, these processes have 
been integrated into the new regulatory context of the Safety Management System, 
which specifically permits the Authority and the operator to go beyond uniquely 
prescriptive regulatory requirements. 

The programmed and unscheduled inspections, on the ground and in flight, 
are undertaken by different entities (PEPN on the one hand, OCV on the other). 
Their statutes are different but the number of inspections performed in one year is 
limited and has to involve all French operators. The proportion of the total number of 
inspections by the number of flight legs varies considerably according to the operator. 
For comparison, an airline operating five long-haul aeroplanes will be subject to 
about two inspections a year for 2,000 flights, whereas Air France, which has a fleet of 
that is more varied and extensive, will be subject to 80 inspections a year for 350,000 
flights. The ratio of 1/1,000 for others is here reduced to 1/4,000. In this context, the 
probability of discovering deviations, even those that are purely regulatory, is greatly 
reduced for an airline like Air France. The level of individual performance is however 
extremely difficult to demonstrate, and thus to correct. In fact, in case of an inspection, 
even unscheduled, crews know what is expected of them and generally manage 
to avoid behaving in such a way as to show: deviations from standard procedures, 
poor quality of communication or teamwork, etc. The variable conditions of a check 
flight (weather, load, departure and arrival aerodromes) can, in addition, can lead to 
differing judgments as to the quality of the flight crew. 

At the time of the accident, the in-flight inspections, the only ones capable of 
detecting weaknesses in a crew, that were undertaken by the authority had not 
been the subject of any specific comments to Air France. However, an internal safety 
report that was undertaken by Air France after some events and accidents, revealed 
the following:

 � The “situational awareness“, “decision-making“ and “crew resource management“ 
causal factors were inseparable and were by far the most significant contributing 
factor in many events;

 � The piloting abilities of long-haul and/or ab-initio pilots were sometimes poor;
 � A notable  loss of good sense and general aeronautical knowledge;
 � Weaknesses in terms of representation and awareness of the  situation during 

system failures (reality, severity, danger level, induced effects …).

The problem described above is accentuated by the lack of cohesion and synergy 
created by the current organisation, which leads to two separate entities within 
the DGAC to undertake the in-flight inspections while belonging to two different 
hierarchical structures.  Further, the initial and recurrent training of some inspectors, 
associated for some with limited professional experience, makes it more difficult to 
detect the weaknesses of an operator and to evaluate its level of safety performance.    
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2.6 SAR operations

The accident occurred at 2 h 14 min 28 in the ATLANTICO FIR. It is useful to bear in 
mind that the last radio transmission between the aeroplane and the ATLANTICO ACC 
took place at 1 h 35 min. A contact should have occurred at around 2 h 20 when 
passing the TASIL point. The first ALERFA/INCERFA message was transmitted by the 
Madrid ACC at 8 h 22. Thus approximately 6 hours had gone by between the last 
message expected from the crew and the transmission of the first message triggering 
the uncertainty phase. It was only at 11 h 04 min and 12 h 14 min respectively that 
Brazilian and Senegalese aeroplanes took off heading to 2 different search areas.

During flyover of remote or maritime areas, as was the case for flight AF 447, the key 
witness of an event is the air traffic control body in charge of the flight. The recurrence 
of communication problems in HF combined with the heavy traffic in this area and 
at that time did however mean the critical situation was accepted, the air traffic 
controllers often being confronted with this loss of radio contact. That was how this 
situation was treated as normal and did not lead to questioning and through this to 
the rapid triggering of incerfa, alerfa or detresfa type urgency phases, prior to any 
action by SAR services. 

The operator became aware of the failure messages issued by the aeroplane and 
informed the French search and rescue authorities, also informing them of the last 
known position of the aeroplane. These authorities then considered themselves 
not competent to intervene in a zone outside their area of responsibility. This could 
be explained by ineffective training for the SAR agents, particularly in terms of 
coordination with foreign counterparts. Furthermore the latter lacked the resources 
that would have enabled rapid and effective action. Thus, even if the possibility of 
an accident had been taken into account individually, the searches for information 
were not coordinated, making each service (air traffic control, SAR, operator) in 
several countries involved question each other without any real decision for action 
being taken. 

In addition, information about the aeroplane’s last known position was not transferred 
or transmitted to a Brazilian or Senegalese SAR centre. The absence of means of 
detection (no radar coverage) and information (failure of ADS connections) did not 
make it possible for any objective responses to be provided during the search for 
flight AF 447. The radio communication problems and the meteorological conditions 
formed confirmation biases for considering the situation as normal.

Once the critical phases were triggered and the rescue coordination centres were 
warned of a possible accident, the latter wasted considerable time gathering 
information and taking into account the necessity of triggering searches.

The absence of an SAR protocol between Senegal and Brazil meant that the air 
resources available in each country were not known quickly (like the Bréguet 
Atlantic 2 in DAKAR), nor was it possible to rapidly determine a single ARCC in charge 
of coordinating the SAR mission. 
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2.7 Radio-communications with control services 

2.7.1 Controllers’ and crew’s planned actions

Before entry into ATLANTICO FIR, the controller of the Recife ACC asked the crew to 
contact DAKAR Oceanic ACC after TASIL point. This practice enabled the crew to leave 
ATLANTICO FIR even in the event of loss of HF radio contact, which must have been 
quite common. The crew of flight AF 447, in these conditions, probably considered 
that it was not necessary to make other position reports before TASIL. The crew was 
doubtless counting on a SELCAL call from the controller of Atlantico ACC in case of 
need after passing INTOL point.

The controller of ATLANTICO ACC could have expected to receive position reports 
from the crew when they passed SALPU and ORARO points. Because of the bad 
quality of the HF noted on that day, he was not surprised by this and he doubtless 
did not make the call via SELCAL, considering that he would not, in those conditions, 
receive an answer. 

This lack of radio contacts was likely interpreted as normal by all those involved. 
It contributed to making the controller lose awareness of flight AF 447. The relieving 
of the ATLANTICO ACC controller shortly before the expected exit of Atlantico FIR 
may have reinforced this loss of awareness.

The lack of contact between the ATLANTICO ACC controller and the crew before the 
transfer to Dakar oceanic ACC, then the lack of contact between the Dakar oceanic 
ACC controller and the Atlantico ACC controller after the estimated passage of the 
TASIL point meant that flight AF 447 was not monitored effectively. 

2.7.2 Limits on the use of the Eurocat system in Senegal

The Eurocat system was installed in the operations room while it was being assessed 
in an experimental context in Senegal. In fact, on the day of the event it was partly 
replacing the system in place. It was not accompanied by training for all the controllers 
on duty, or with user guidelines. The specifics of its use were consequently poorly 
understood. 

A failure to detect an error in the formatting of a flight plan in the Eurocat system 
made it impossible for the crew to establish a satellite connection with a view to a 
position report by ADS-C, or exchanges by CPDLC.

This ambiguous use of a non-operational system in a control room encouraged the 
creation of a representation of flight AF 447 in the Dakar centre with no connection 
with its real position. This situation distanced the controller from monitoring 
his traffic.

However, a simulation of the flight that was undertaken in the context of the 
investigation showed that ADS-C connection would likely have alerted the controller 
as soon as there was a loss of altitude generated by the loss of Mach (330 feet).
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2.7.3 Alert service provision

The presence of ADS-C capabilities in Brazil and in Senegal offered controllers the 
potential to regain awareness of the flight. These capacities were not exploited by 
the crew (during transit in ATLANTICO FIR), by Brazil, or by Senegal (in experimental 
phase) for flight AF 447. 

The Atlantico ACC controller considered that the DAKAR Oceanic ACC controller 
would call him in the event of absence of contact with flight AF 447, 3 minutes after 
the expected entry time into his FIR. The Dakar controller however was waiting for 
the controller of Sal ACC to inform him of the entry of flight AF 447 into his FIR. These 
strategies of deferring information led in fact to the suspension of the alert service 
in each of these FIRs, thus compromising the triggering of alerts within appropriate 
timeframes. Questioning Sal controllers, who had radar, did not make it possible to 
regain effective monitoring of the flight.

2.8 Lessons learnt from the search for the wreckage of flight AF 447

The absence of data on sea surface currents measured in-situ at the start of, and then 
during the search and rescue operations, was detrimental to the effectiveness of the 
subsequent determination of the search strategies. The lack of reliable measured 
information in this area of the Atlantic Ocean affected the accuracy of the reverse-drift 
calculation tools, which contributed towards increasing the uncertainties inherent to 
this type of simulation.

This work demonstrated that it is important to quickly have access to data on sea 
surface currents measured in-situ. If the first aircraft to arrive at the zone after the 
accident had released drifting buoys, which could have been monitored by satellite, 
then this data would have facilitated the localisation of the accident site.
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3 - CONCLUSION

3.1 Findings

 � The crew possessed the licenses and ratings required to undertake the flight.

 � The aeroplane possessed a valid Certificate of Airworthiness, and had been 
maintained in accordance with the regulations. 

 � The aeroplane’s weight and balance were within operational limits. 

 � The aeroplane had taken off from Rio de Janeiro without any known technical 
problems, except on one of the three radio management panels. 

 � The composition of the crew was in accordance with the operator’s procedures.

 � The meteorological situation was not exceptional for the month of June in the 
inter-tropical convergence zone.

 � There were powerful cumulonimbus clusters on the route of AF 447. Some of 
them could have been the centre of some notable turbulence.

 � An additional meteorological analysis showed the presence of strong 
condensation towards AF 447’s flight level, probably associated with convection 
phenomena.

 � The precise composition of the cloud masses above 30,000 feet is little known, 
in particular with regard to the super-cooled water/ice crystal divide, especially 
with regard to the size of the latter.

 � Several aeroplanes that were flying before and after AF 447, at about the same 
altitude, altered their routes in order to avoid cloud masses.

 � The crew had identified some returns on the weather radar and made a heading 
change of 12° to the left of their route. 

 � At the time of the autopilot disconnection, the Captain was taking a rest.

 � The departure of the Captain was done without leaving any specific instructions 
for crossing the ITCZ.

 � There was an implicit designation of a pilot as relief Captain. 

 � There was an inconsistency between the speeds measured, likely following the 
blockage of the Pitot probes by ice crystals. 

 � The AP then the A/THR disconnected while the aeroplane was flying at the upper 
limit of a slightly turbulent cloud layer.

 � The aeroplane systems detected an inconsistency in the measured airspeeds. The 
flight control law was reconfigured to alternate 2B.

 � No failure message on the ECAM clearly indicates the detection by the system of 
an inconsistency in measured airspeeds.

 � The pilots detected an anomaly through the autopilot disconnection warning 
that surprised them. 
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 � Although having identified and called out the loss of the airspeed indications, 
neither of the two copilots called the “Unreliable IAS” procedure.

 � The Flight Directors did not disconnect.

 � The crossbars disappeared and then re-appeared on several occasions, changing 
mode several times.

 � The copilots had not undertaken any in-flight training, at high altitude, for the 
“vol avec IAS douteuse” procedure or on manual aeroplane handling. 

 � The speed displayed on the left PFD was incorrect for 29 seconds, that of the 
speed on the ISIS for 54 seconds and the speed displayed on the right PFD for 
61 seconds at most.

 � In less than one minute after autopilot disconnection, the aeroplane exited its 
flight envelope following inappropriate pilot inputs. 

 � The Captain came back into the cockpit about 1 min 30 after the autopilot 
disconnection. 

 � Throughout the flight, the movements of the flight control surfaces were 
consistent with the pilot’s inputs. 

 � Up to the exit from the flight envelope, the aeroplane’s movements were 
consistent with the position of the flight control surfaces. 

 � There is no regulatory CRM training for a crew made up of two copilots in a 
situation with a relief Captain. 

 � The approach to stall was characterised by the triggering of the warning then the 
appearance of buffet.

 � In the absence of a display of the limit speeds on the speed tape on the PFD, the 
aural stall warning is not confirmed by any specific visual display. 

 � The stall warning sounded continuously for 54 seconds. 

 � Neither of the pilots made any reference to the stall warning or to buffet. 

 � A short time after the triggering of the stall warning, the PF selected TO/GA thrust 
and made a nose-up input. 

 � Neither of the pilots formally identified the stall situation. 

 � The theoretical training undertaken by the copilots, as well as some documents, 
including the OSV note, associated the buffet phenomenon with the approach to 
stall as well as to overspeed. On the Airbus A330, the buffet phenomenon is only 
encountered on the approach to stall. 

 � The angle of attack is the parameter that allows the stall warning to be triggered; 
if the angle of attack values become invalid, the warning stops. 

 � By design, when the measured speed values are lower than 60 kt, the measured 
angle of attack values are invalidated. 

 � Each time that the stall warning triggered, the angle of attack exceeded the value 
of its theoretical trigger threshold. 

 � The aeroplane’s angle of attack is not directly displayed to the pilots.
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 � The engines functioned normally and always responded to the crew’s inputs.

 � The PNF called out imprecise flight path corrections. They were however essential 
and sufficient for short-term management of the situation.

 � The last recorded values were a pitch attitude of 16.2 degrees nose-up, roll of 
5.3 degrees to the left and a vertical speed of -10,912 ft/min.

 � The Pitot probes installed on F-GZCP met requirements that were stricter than 
the certification standards.

 � Analysis of the events related to the loss of airspeed indications had led Airbus 
and Air France to replace C16195AA Pitot probes by the C16195BA model. The 
first aeroplane had been modified on 30 May 2009.

 � EASA had analyzed Pitot probe icing events; it had confirmed the severity of the 
failure and had decided not to make the probe change mandatory. 

 � The flight was not transferred between the Brazilian and Senegalese control 
centres. 

 � Between 8 h 22 and 9 h 09, the first emergency alert messages were sent by the 
Madrid and Brest control centres. 

 � The crew was not able to use the ADS-C and CPDLC functions with DAKAR Oceanic. 
If the connection had been established, the loss of altitude would have generated 
an alert on the controller’s screen.

 � The first floating aeroplane parts were found 5 days after the accident. 

 � The flight recorders were recovered 23 months after the accident.

3.2 Causes of the Accident 

The obstruction of the Pitot probes by ice crystals during cruise was a phenomenon 
that was known but misunderstood by the aviation community at the time of the 
accident. From an operational perspective, the total loss of airspeed information that 
resulted from this was a failure that was classified in the safety model. After initial 
reactions that depend upon basic airmanship, it was expected that it would be rapidly 
diagnosed by pilots and managed where necessary by precautionary measures on 
the pitch attitude and the thrust, as indicated in the associated procedure.

The occurrence of the failure in the context of flight in cruise completely surprised 
the pilots of flight AF 447. The apparent difficulties with aeroplane handling at high 
altitude in turbulence led to excessive handling inputs in roll and a sharp nose-up 
input by the PF. The destabilisation that resulted from the climbing flight path and 
the evolution in the pitch attitude and vertical speed was added to the erroneous 
airspeed indications and ECAM messages, which did not help with the diagnosis. 
The crew, progressively becoming de-structured, likely never understood that it was 
faced with a “simple” loss of three sources of airspeed information. 

In the minute that followed the autopilot disconnection, the failure of the attempts 
to understand the situation and the de-structuring of crew cooperation fed on 
each other until the total loss of cognitive control of the situation. The underlying 
behavioural hypotheses in classifying the loss of airspeed information as “major” were 
not validated in the context of this accident. Confirmation of this classification thus 
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supposes additional work on operational feedback that would enable improvements, 
where required, in crew training, the ergonomics of information supplied to them 
and the design of procedures.

The aeroplane went into a sustained stall, signalled by the stall warning and strong 
buffet. Despite these persistent symptoms, the crew never understood that they were 
stalling and consequently never applied a recovery manoeuvre. The combination 
of the ergonomics of the warning design, the conditions in which airline pilots are 
trained and exposed to stalls during their professional training and the process of 
recurrent training does not generate the expected behaviour in any acceptable 
reliable way.

In its current form, recognizing the stall warning, even associated with buffet, 
supposes that the crew accords a minimum level of “legitimacy” to it. This then 
supposes sufficient previous experience of stalls, a minimum of cognitive availability 
and understanding of the situation, knowledge of the aeroplane (and its protection 
modes) and its flight physics. An examination of the current training for airline pilots 
does not, in general, provide convincing indications of the building and maintenance 
of the associated skills.

More generally, the double failure of the planned procedural responses shows the 
limits of the current safety model. When crew action is expected, it is always supposed 
that they will be capable of initial control of the flight path and of a rapid diagnosis 
that will allow them to identify the correct entry in the dictionary of procedures. A 
crew can be faced with an unexpected situation leading to a momentary but profound 
loss of comprehension. If, in this case, the supposed capacity for initial mastery and 
then diagnosis is lost, the safety model is then in “common failure mode”. During 
this event, the initial inability to master the flight path also made it impossible to 
understand the situation and to access the planned solution.

Thus, the accident resulted from the following succession of events:

 � Temporary inconsistency between the airspeed measurements, likely following 
the obstruction of the Pitot probes by ice crystals that, in particular, caused the 
autopilot disconnection and the reconfiguration to alternate law;

 � Inappropriate control inputs that destabilized the flight path;
 � The lack of any link by the crew between the loss of indicated speeds called out 

and the appropriate procedure;
 � The late identification by the PNF of the deviation from the flight path and the 

insufficient correction applied by the PF;
 � The crew not identifying the approach to stall, their lack of immediate response 

and the exit from the flight envelope;
 � The crew’s failure to diagnose the stall situation and consequently a lack of inputs 

that would have made it possible to recover from it.

These events can be explained by a combination of the following factors:

 � The feedback mechanisms on the part of all those involved that made it impossible: 
 y To identify the repeated non-application of the loss of airspeed information 
procedure and to remedy this,

 y To ensure that the risk model for crews in cruise included icing of the Pitot 
probes and its consequences;
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 � The absence of any training, at high altitude, in manual aeroplane handling and 
in the  procedure for ”Vol avec IAS douteuse”;

 � Task-sharing that was weakened by:
 y Incomprehension of the situation when the autopilot disconnection occurred,
 y Poor management of the startle effect that generated a highly charged 
emotional factor for the two copilots;

 � The lack of a clear display in the cockpit of the airspeed inconsistencies identified 
by the computers;

 � The crew not taking into account the stall warning, which could have been due to:
 y A failure to identify the aural warning, due to low exposure time in training to 
stall phenomena, stall warnings and buffet,

 y The appearance at the beginning of the event of transient warnings  that could 
be considered as spurious,

 y The absence of any visual information to confirm the approach-to-stall after 
the loss of the limit speeds,

 y The possible confusion with an overspeed situation in which buffet is also 
considered as a symptom,

 y Flight Director indications that may led the crew to believe that their actions 
were appropriate, even though they were not,

 y The difficulty in recognizing and understanding the implications of a 
reconfiguration in alternate law with no angle of attack protection.
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4 - SAFETY RECOMMENDATIONS

Note: In accordance with Article 17.3 of European Regulation (EU) 996/2010 of the European 
Parliament and Council of 20 October 2010 on the investigation and prevention of accidents 
and incidents in civil aviation, a safety recommendation shall in no case create a presumption 
of blame or liability for an accident, a serious incident or an incident. The addressee of a safety 
recommendation shall inform the safety investigation authority which issued the recommendation 
of the actions taken or under consideration, under the conditions described in Article 18 of the 
aforementioned Regulation.

On the basis of the first findings from the investigation, the BEA issued the following 
recommendations in its Interim Reports N°2 and 3:

4.1 Recommendations from Interim Report n°2

4.1.1 Flight Recorders

The investigation into the accident to AF 447 confirms the importance of data 
from the flight recorders in order to establish the circumstances and causes of an 
accident and to propose safety measures that are substantiated by the facts. As in 
other investigations, it also brings to light the difficulties that can be encountered 
in localizing, recovering and reading out the recorders after an accident in the sea. 

These difficulties raise questions about the adequacy of the means currently in use 
on civil transport aircraft for the protection of flight data with the technological 
possibilities and the challenges that some accidents represent, in particular those 
that occur over the sea. In the context of this investigation, the BEA thus formed an 
international working group in order to examine the various techniques that can be 
employed to safeguard flight data and/or to facilitate localisation of the wreckage and 
recovery of the flight recorders. This working group dedicated itself to analyzing each 
field as completely as possible, from the transmission of flight data by satellite to new 
ULB technologies and it settled on three additional areas for significant improvements 
in safety: increasing the transmission time and range of the ULB beacons, the sending 
of data on initialisation and the installation of deployable recorders. This work was 
presented on 19 November 2009 to the ICAO Air Navigation Commission.

On the basis of this work, the BEA recommends that EASA and ICAO:

 � extend as rapidly as possible to 90 days the regulatory transmission 
time for ULB’s installed on flight recorders on aeroplanes performing 
public transport flights over maritime areas;

 � make it mandatory, as rapidly as possible, for aeroplanes performing 
public transport flights over maritime areas to be equipped with an 
additional ULB capable of transmitting on a frequency (for example 
between 8.5 kHz and 9.5 kHz) and for a duration adapted to the pre-
localisation of wreckage;

 � study the possibility of making it mandatory for aeroplanes performing 
public transport flights to regularly transmit basic flight parameters 
(for example position, altitude, speed, heading).
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In addition, the BEA recommends that ICAO:

 � ask the FLIRECP group to establish proposals on the conditions for 
implementing deployable recorders of the Eurocae ED-112 type for 
aeroplanes performing public transport flights.

4.1.2 Certification

Examination of reported UAS events in cruise has shown that the majority of them 
occurred outside of the envelope defined in Appendix C. In fact, the certification 
criteria are not representative of the conditions that are really encountered at high 
altitude, for example with regard to temperatures. In addition, it appears that some 
elements, such as the size of the ice crystals within cloud masses, are little known 
and that it is consequently difficult to evaluate the effect that they may have on 
some equipment, in particular the Pitot probes. In this context, the tests aimed at 
the validation of this equipment do not appear to be well-adapted to flights at high 
altitude.

Consequently, the BEA recommends that EASA:

 � undertake studies to determine with appropriate precision the 
composition of cloud masses at high altitude;

and

 � in coordination with the other regulatory authorities, based on the 
results obtained, to modify the certification criteria.

4.2 Recommendations from Interim Report n°3

4.2.1 Recommendations on Operations

Training for Manual Aircraft Handling

The investigation brought to light weaknesses in the two copilots: the inappropriate 
inputs by the PF on the flight controls at high altitude were not noted by the PNF 
through an absence of effective monitoring of the flight path. The stall warning and 
the buffeting were not identified either. This was probably due to a lack of specific 
training, although in accordance with regulatory requirements. Manual aeroplane 
handling cannot be improvised and requires precision and measured inputs on the 
flight controls. There are other possible situations leading to autopilot disconnection 
for which only specific and regular training can provide the skills necessary to ensure 
the safety of the flight. Examination of their last training records and check rides 
made it clear that the copilots had not been trained for manual aeroplane handling 
of approach to stall and stall recovery at high altitude. 

Consequently, the BEA recommends:

 � that EASA review the content of check and training programmes and 
make mandatory, in particular, the setting up of specific and regular 
exercises dedicated to manual aircraft handling of approach to stall and 
stall recovery, including at high altitude.
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Relief Captain

Taking into account the planned length of the flight, the flight crew was augmented 
by a copilot to allow for rest during the flight. The investigation showed that the 
Captain left to take his rest without having clearly nominated the PF as his relief. The 
flight crew consisting of two copilots thus inherited a certain strategic vagueness 
after his departure, which was reinforced by a lack of training adapted to crews 
made up of two copilots and to the exercise of the task of relief Captain. Though the 
distribution of roles between the two copilots probably did not seem ambiguous to 
them, it did nevertheless pose a problem. In fact, the rationale can be questioned for 
designating the copilot (PF) as relief Captain, as his overall experience and on type 
was much lower than that of the second copilot (PNF), who was also an officer of the 
airline’s OCC and thus more likely to be accorded a certain level of recognition. 

Consequently, the BEA recommends:

 � that EASA define additional criteria for access to the role of relief Captain 
so as to ensure better task-sharing in case of augmented crews;

and 

 � that, provisionally, the DGAC define additional criteria for access to 
the role of relief Captain so as to ensure better task-sharing in case of 
augmented crews.

4.2.2 Recommendation relating to Certification

Angle of Attack Measurement

The crew never formally identified the stall situation. Information on angle of 
attack is not directly accessible to pilots. The angle of attack in cruise is close to the 
stall warning trigger angle of attack in a law other than normal law. Under these 
conditions, manual handling can bring the aeroplane to high angles of attack such 
as those encountered during the event. It is essential in order to ensure flight safety 
to reduce the angle of attack when a stall is imminent. Only a direct readout of the 
angle of attack could enable crews to rapidly identify the aerodynamic situation of 
the aeroplane and take the actions that may be required. 

Consequently, the BEA recommends:

 � that EASA and the FAA evaluate the relevance of requiring the presence 
of an angle of attack indicator directly accessible to pilots on board 
aeroplanes.

4.2.3 Recommendations relating to Flight Recorders

Analysis of the FDR parameters and audition of the CVR provide information that 
is essential to an understanding of the event. However, it is difficult to reconstruct 
the indications that were available to the crew on their instrument panel, especially 
the instructions given by the Flight Director crossbars when they reappear. It is also 
impossible to see whether there have been any attempts to re-engage the autopilot. 
A view of the instrument panel would complete the information provided by the 
FDR and the CVR and would make it possible to confirm the indications that were 
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available to the crew and the actions that they made. Numerous recommendations 
have already been made on this subject over the past ten years without any real 
progress having been made. 

Consequently, the BEA again recommends:

 � that ICAO require that aircraft undertaking public transport flights with 
passengers be equipped with an image recorder that makes it possible 
to observe the whole of the instrument panel;

and 

 � that at the same time, ICAO establish very strict rules for the readout 
of such recordings in order to guarantee the confidentiality of the 
recordings.

Today, the regulation requires recording of the flight parameters displayed on the 
left side. Some parameters essential to the analysis of the conduct of the flight are 
lacking, in particular those displayed to the pilot in the right seat: speed, altitude, 
attitudes, position of the flight director crossbars, etc. In addition, aeroplanes are 
equipped with complex systems whose functional analysis is limited and delayed by 
the absence of a recording of all of the data sources that they use. 

Consequently, the BEA recommends: 

 � that EASA and the FAA make mandatory the recording:
 y of the position of the flight director crossbars,
 y of the parameters relating to the conduct of the flight displayed on the 
right side, in addition to those displayed on the left side;

and

 � that EASA and the FAA evaluate the relevance of making mandatory the 
recording of the air data and inertial parameters of all of the sources 
used by the systems.

4.2.4 Recommendations relating to Transmission of Flight Data

In its Interim Report n°2, the BEA issued safety recommendations on increasing the 
duration and the range of Underwater Locator Beacon (ULB)’s, regular transmission 
of data and the installation of deployable recorders. These recommendations were 
based on the conclusions of an international government-industry working group 
led by the BEA in the framework of the safety investigation into the accident to flight 
AF 447, which has since studied the feasibility of triggered transmission of flight 
data. This concept consists of real time analysis of onboard flight parameters in 
order to detect emergency situations. In these cases, the transmission of flight data 
is triggered to facilitate the localisation of an aeroplane in an emergency situation. 
The results of the working group show that it is technically feasible to define reliable 
criteria based on flight parameters allowing emergency situations to be detected, 
while limiting false alarms. The group also concluded that it is technically feasible 
to obtain an impact position with enough precision, even in case of accidents where 
the aeroplane is in an unusual position. In addition, the group work showed that 
the in-flight activation of new generation ELT’s using the same emergency detection 
criteria is feasible, thus allowing localisation of wreckage to within 5 km. 
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On the basis of this work, the BEA recommends:

 � that EASA and ICAO make mandatory as quickly as possible, for aeroplanes 
making public transport flights with passengers over maritime or remote 
areas, triggering of data transmission to facilitate localisation as soon 
as an emergency situation is detected on board;

and

 � that EASA and ICAO study the possibility of making mandatory, for 
aeroplanes making public transport flights with passengers over maritime 
or remote areas, the activation of the emergency locator transmitter 
(ELT), as soon as an emergency situation is detected on board.

4.3 New Recommendations 

4.3.1 SAR coordination plans over maritime and remote areas

Those responsible for Brazilian SAR stated that they did not know what means were 
available in the neighbouring SAR areas and had not tried to obtain information 
on the subject. Contrary to ICAO standards and recommended practices, there is 
no SAR coordination plan between Brazil and Senegal. This lack of a plan caused a 
considerable delay in the start of SAR operations.

Consequently, the BEA recommends that:

 � ICAO ensure the implementation of SAR coordination plans or regional 
protocols covering all of the maritime or remote areas for which 
international coordination would be required in the application of SAR 
procedures, including in the South Atlantic area. [Recommendation 
FRAN-2012-032]

4.3.2 Training of SAR operators

The practices observed in the MRCC showed that any doubt induces a formalised 
SAR response. Although informed by the operator, the French ARCC did not take 
adequate steps to formalise the implementation of SAR, restricting itself to their zone 
of responsibility. The training courses undertaken by the ARCC and MRCC personnel 
rely heavily on the experience within these centres. There is no formalised and 
common training specific to the SAR mission. 

Consequently, the BEA recommends that:

 � the DGAC, in concert with the other services responsible, develop a 
homogeneous framework for training and for approval of operators 
responsible for search and rescue activities in France; [Recommendation 
FRAN-2012-033]

 � ICAO define the framework for the training of SAR operators in 
its standards and recommended practices. [Recommendation 
FRAN-2012-034]
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4.3.3 Organisation of SAR in France

The investigation showed a lack of coordination within the French ARCC. In 
addition, the absence of a central ARCC in France led the operator to contact several 
organisations and to provide key information to organisations not competent in SAR. 
The latter did not pass on this information (in particular the last known position of 
the aeroplane contained in an ACARS message).

Further, the MRCC have documents listing the MRCC’s of all countries, their national 
points of contact with their coordinates, as well as the ARCC’s and JRCC’s. 

Consequently, the BEA recommends that:

 � the DGAC designate a point of contact at ICAO for the ARCC that has 
adequate means to accomplish his/her missions; [Recommendation 
FRAN-2012-035]

 � ICAO ensure each Member State has a national point of contact and 
makes his/her contact information available. [Recommendation 
FRAN-2012-036]

4.3.4 Air Traffic Control

The investigation showed that the use of HF as a means of communication between 
ground and aeroplane is limited. Link outages were frequent in this area, especially 
on the day of the accident. A simulation of the use of ADS-C and CPDLC functions 
showed that the loss of altitude would have generated an alert on the DAKAR 
controller’s screen. There are numerous areas in the world where HF remains the 
only means of communication between ground and aeroplane, though more reliable 
means are available today. 

Consequently, the BEA recommends that:

 � the Brazilian and Senegalese authorities make mandatory the utilisation, 
by aeroplanes so equipped, of ADS-C and CPDLC functions in the zones 
in question; [Recommendation FRAN-2012-037]

 � ICAO  request the involved States to accelerate the operational 
implementation of air traffic control and communication systems 
that allow a permanent and reliable link to be made between ground 
and aeroplane in all of the areas where HF remains the only means of 
communication between the ground and aeroplanes. [Recommendation 
FRAN-2012-038]

4.3.5 Initial and recurrent training of pilots

Aeroplane handling in the longitudinal axis in a reconfigured law is in general very 
similar in sensations and responses to flying in normal law. Nevertheless, exiting the 
flight envelope can be made possible, without longitudinal pilot inputs, by the total 
loss of the protections and the absence of positive longitudinal stability. The possible 
related loss of associated speed references doubtless constitutes an aeroplane 
handling difficulty for crews that are not prepared. Training does not adequately 
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draw attention of crews to the precise identification of the type of reconfiguration 
and of the level of protection and on the necessity to monitor the trajectory and 
the primary parameters. In general, the complexity of modern aeroplanes and their 
particularities require appropriate initial and recurrent training courses.

Consequently, the BEA recommends that:

 � EASA ensure the integration, in type rating and recurrent training 
programmes, of exercises that take into account all of the reconfiguration 
laws. The objective sought is to make its recognition and understanding 
easier for crews especially when dealing with the level of protection 
available and the possible differences in handling characteristics, 
including at the limits of the flight envelope; [Recommendation 
FRAN-2012-039]

 � More generally, EASA ensure that type rating and recurrent training 
programmes take into account the specificities of the aircraft for which 
they are designed. [Recommendation FRAN-2012-040]

After the autopilot disconnection, while the aeroplane was stable in cruise, several 
pilot inputs significantly degraded the aeroplane’s kinetic energy. The rapid exit 
from the flight envelope was not anticipated by the pilots, nor as it understood. In 
the absence of any reliable speed indications, understanding of the overall physics 
of flight at high altitude could have considerably helped the pilots to anticipate the 
rapid degradation of the situation. The same applies to the overspeed phenomena 
that have evolved with modern aeroplanes. 

Consequently, the BEA recommends that:

 � EASA define recurrent training programme requirements to make 
sure, through practical exercises, that the theoretical knowledge, 
particularly on flight mechanics, is well understood. [Recommendation 
FRAN-2012-041]

The startle effect played a major role in the destabilisation of the flight path and 
in the two pilots understanding the situation. Initial and recurrent training as 
delivered today do not promote and test the capacity to react to the unexpected. 
Indeed the exercises are repetitive, well known to crews and do not enable skills in 
resource management to be tested outside of this context. All of the effort invested 
in anticipation and predetermination of procedural responses does not exclude the 
possibility of situations with a “fundamental surprise“ for which the current system 
does not generate the indispensable capacity to react.

The rapid increase in crew workload in an unusual and unexpected situation led to the 
degradation of the quality of communication and coordination between the pilots. 

Consequently, the BEA recommends that:

 � EASA review the requirements for initial, recurrent and type rating 
training for pilots in order to develop and maintain a capacity to manage 
crew resources  when faced with the surprise generated by unexpected 
situations; [Recommendation FRAN-2012-042]
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 � EASA ensure that operators reinforce CRM training to enable 
acquisition and maintenance of adequate behavioural automatic 
responses in unexpected and unusual situations with a highly charged 
emotional factor. [Recommendation FRAN-2012-043]

The lack of any reference system and of homogeneity in the instruction methods 
and evaluation criteria for instructors does not allow an objective evaluation and 
comparison of CRM skills among crews. This lack could however be compensated for 
by the existence of a standards for instruction that would allow the implementation 
of an objective evaluation and comparison of the level of CRM among crews.

Consequently, the BEA recommends that:

 � EASA define criteria for selection and recurrent training among 
instructors that would allow a high and standardized level of instruction 
to be reached. [Recommendation FRAN-2012-044]

4.3.6 Improving flight simulators and exercises

The crew of flight AF 447 did not associate the disappearance of the speed information 
and the ECAM messages associated with the “Unreliable IAS” procedure. The three 
crew members had undertaken their training according to a known scenario on 
the simulator, though the technical limitations of the simulator, whose fidelity is 
satisfactory in most cases, do not allow certain unusual situations to be simulated. 

The demonstrative context of the pedagogical approach does not allow the crew 
to realize the influence of the startle effect generated by the warnings nor, where 
applicable, of the inappropriate reflex actions on the controls that can occur as a 
consequence. 

These technical limitations, combined with the absence of specific pedagogical tools, 
do not guarantee assimilation and maintenance of adequate knowledge making it 
possible to avoid, identify and recover from such a situation. 

Consequently, the BEA recommends that:

 � EASA modify the basis of the regulations in order to ensure better fidelity 
for simulators in reproducing realistic scenarios of abnormal situations; 
[Recommendation FRAN-2012-045]

 � EASA ensure the introduction into the training scenarios of the effects 
of surprise in order to train pilots to face these phenomena and to work 
in situations with a highly charged emotional factor. [Recommendation 
FRAN-2012-046]

4.3.7 Ergonomics

The crew did not de-activate the flight directors and did not call out any changes in 
FMA mode. It is not sure that they noticed the appearances and disappearances of the 
flight director crossbars. It is likely that the crew did not know of the mode changes 
when the flight director became active again, reading and assimilating the displays 
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on the FMA in dynamic and stressful conditions not being instinctive or natural. 
It seems that requiring an action from the crew to re-engage this automatic system 
would, on the one hand, lead to a consistency with the autopilot and the autothrust, 
and on the other hand stimulate a check on the modes and the consistency of the 
commands presented at the time of the re-engagement. 

Consequently, the BEA recommends that:

 � EASA require a review of the re-display and reconnection logic of 
the flight directors after their disappearance, in particular to review 
the conditions in which an action by the crew would be necessary to 
re-engage them; [Recommendation FRAN-2012-047]

Further, even if it is not sure that the crew followed the orders from the flight director 
while the stall warning was active, the orders from the crossbars were in contradiction 
with the inputs to make in this situation and thus may have troubled the crew.

Consequently, the BEA recommends that:

 � EASA require a review of the functional or display logic of the flight 
director so that it disappears or presents appropriate orders when the 
stall warning is triggered. [Recommendation FRAN-2012-048]

The failure messages successively displayed on the ECAM did not allow the crew 
to make a rapid and effective diagnosis of the situation the aeroplane was in, in 
particular of the blockage of the Pitot probes. They were never in a position the make 
the connection between the messages that appeared and the procedure to apply, 
although reading the ECAM and messages should facilitate the analysis of the situation 
and allow failures to be handled. Several systems had however identified the origin 
of the problem but only generated failure messages related to the consequences 
on themselves.

Consequently, the BEA recommends that:

 � EASA study the relevance of having a dedicated warning provided to 
the crew when specific monitoring is triggered, in order to facilitate 
comprehension of the situation. [Recommendation FRAN-2012-049]

The stall warning is described as being a combination of the aural warning, the 
illumination of the Master Warning light on the FCU and an indication on the red and 
black speed tape (VSW). However, the illumination of the Master Warning is generally 
of a different origin. In the absence of the red and black Vsw on the speed tape, the 
only element that presents the characteristics of clarity and absence of ambiguity on 
approach to stall is the aural warning. Symbolic visual information combined with an 
aural warning on an aeroplane on which sight is highly demanded would doubtless 
improve its perception.

Consequently, the BEA recommends that:

 � EASA determine the conditions in which, on approach to stall, the 
presence of a dedicated visual indications, combined with an aural 
warning should be made mandatory. [Recommendation FRAN-2012-050]
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When airspeeds are below 60 kt, the stall warning is no longer available, even though 
it may be beneficial for it to be available at all times.

Consequently, the BEA recommends that:

 � EASA require a review of the conditions for the functioning of the 
stall warning in flight when speed measurements are very low. 
[Recommendation FRAN-2012-051]

4.3.8 Operational and Technical Feedback

The investigation showed that the certification of an aeroplane does not make 
it possible to identify all of the operational risks, and that in addition there is no 
mandatory operational and human factors analysis of in-service events (as with 
continuing airworthiness). EASA is currently undertaking work (OSD) aimed at 
having the holder of the aeroplane type certificate define its minimum associated 
training programme, based on the operational risks identified by operators and the 
manufacturer following in-service events.

In-service feedback is an essential prerequisite in the process of improving flight 
safety. It is notable that the reports written by crews after events do not always 
reveal their severity or all of the elements of an operational appreciation. This makes 
somewhat random the preservation of the indispensible elements needed for an 
investigation and thus difficult for the operator, the manufacturer and the authorities 
to evaluate the associated risks and threats and to undertake an exhaustive analysis 
that makes it possible to take appropriate measures.

Consequently, the BEA recommends that: 

 � EASA improve the feedback process by making mandatory the operational 
and human factors analysis of in-service events in order to improve 
procedures and the content of training programmes; [Recommendation 
FRAN-2012-052]

and specifically, 

 � that the DGAC take steps aimed at improving the relevance and the 
quality of incident reports written by flight crews and their distribution, 
in particular to manufacturers. [Recommendation FRAN-2012-053]   

4.3.9 Oversight of the Operator

In-flight and ground inspections by the Authority within the airline never brought 
to light any major deviations, whether in relation to the operator’s conformity 
to the regulatory provisions, to the ECP’s or in flight. Thus, the whole range of 
inspections did not bring to light the fragile nature of the CRM nor the weaknesses 
of the two copilots in manual aeroplane handling. Though respecting the regulatory 
requirements applicable to oversight, it appears that the organisation, methods and 
means deployed by the authority were not adequate to detect the weaknesses of an 
operator and impose the necessary corrective measures.
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Consequently, the BEA recommends that: 

 � the DGAC  review the organisation of its oversight so as to improve its 
cohesion and effectiveness; [Recommendation FRAN-2012-054]

 � the DGAC ensure the adequacy of the conditions of recruitment and 
training so that all of its inspectors have the skills required to exercise 
their functions. [Recommendation FRAN-2012-055]

4.3.10 Release of Drift Measuring Buoys

The release of drift measuring buoys by the first aircraft to arrive over the zone would 
have made it possible to better understand the drift of floating debris in the first few 
hours. This would have facilitated modelling of the currents and thus the reverse-
drift calculations to estimate more precisely the localisation of the site.

Consequently, the BEA recommends that:

 � ICAO amend Annex 12 on search and rescue operations so as to encourage 
Contracting States to equip their search aircraft with buoys to measure 
drift and to drop them, when these units are involved in the search for 
persons lost at sea. [Recommendation FRAN-2012-056]
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5 - CHANGES MADE FOLLOWING THE ACCIDENT

5.1 Air France

5.1.1 Aeroplane maintenance and equipment 

A330/A340 Pitot probes

 � Acceleration in the replacement of Thales “AA” probes by “BA” probes, initiated 
on 27 April 2009. By 11 June 2009, all the probes had been replaced.

 � Following an Airworthiness Directive issued by EASA, replacement of Thales “BA” 
probes by Goodrich probes in positions 1 and 3, from 4 to 7 August 2009.

 � Air France internal decision: replacement of Thales “BA” probes by Goodrich 
probes in position 2, from 18 January to 8 February 2010.

5.1.2 Modifications to reference systems

Reinforcement of the role of co-pilots

 � Modification of rules for relieving the Captain in March 2010: the relief co-pilot is 
designated by the Captain, he sits on the left side and is PNF.

 � Deployment underway of a new decision-making method: the co-pilot speaks 
first, before the final decision of the Captain (optimisation of decision-making, 
reinforcing the co-pilot’s responsibilities).

Documentation

 � Changeover to manufacturer’s documentation in English. The B777 division will 
be the first to be thus equipped in October 2012.

5.1.3 Crew training 

Flight simulator training 

Additional unreliable airspeed session:

 � Summer 2009 (A320, A330/A340).
 � Session booklet and briefing: technical reminders, human factors and Threat and 

Error Management  (TEM) aspects.
 � Revision of the emergency manoeuvre, on take-off and in cruise phase.
 � High altitude flight in alternate law.
 � Approach to stall with triggering of STALL warning.
 � Landing without airspeed indications.
 � Related briefings (all flight crew):

 y Weather radar 
 y Ice crystals.

 � Alternate Training & Qualification Programme (ATQP) (preliminary version) 
operational on Airbus A320 since March 2012.

Note: These elements were incorporated into the type ratings 

Augmented crews and Relief of Captain

 � Creation of a DSAC / airlines working group.
 � Definition of new rules.
 � Specific mid-term line training session.
 � Recurrent training and checking exercises integrated into the triennial.
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 � Design of an augmented crew self-study module.
 � Design of a Captain relief self-study module.

Task-sharing

 � Pilot Flying/Pilot Monitoring (PF/PM) effective on Airbus A380 since 2012.

Feedback

 � Line Operations Safety Audit (LOSA) implemented.

Organisation

 � Creation of the “Innovation and Transformation management”.

5.2 Airbus

Review of the “Unreliable speed indication” procedure

 � Flight Operations Telex (FOT) of 9 September 2009 recommending, at the next 
recurrent training course, a session on the simulator at high altitude in normal 
and alternate law including:

 y Manual aeroplane handling,
 y Carrying out the UNRELIABLE SPEED INDICATION / ADR CHECK PROC procedure.

5.3 EASA

5.3.1 Certification measures to improve aviation safety

1) Pitot probe obstruction

Review of the in-service data available after the accident, which prompted increased 
reporting from operators, including events that occurred before and after June 2009, 
prompted issuance of AD 2009-0195 as a precautionary measure. It prohibits Thales 
C16195AA probes from being installed on Airbus A330/340 aircraft, and allows only 
one Thales C16195BA probe in the 3 Pitot positions. The maintenance interval for 
Pitot cleaning was reduced. In parallel, EASA monitored Airbus test activity, in various 
icing facilities and in flight tests, in order to gather data on Pitot probe behaviour in 
ice crystal environments. In addition to the Airbus programmes, a Special Condition is 
being raised on all new projects, imposing the latest specification material available 
for Pitot probes. 

2) Autopilot reconnection

An Airworthiness Directive (AD 2010-0271) issued by EASA in December 2010 asked 
crews that found themselves in such a situation to make sure not to re-connect the 
autopilot before the airspeeds return to values  consistent with flight for 30 seconds, 
due to a risk of pitch runaway that could constitute an “unsafe condition”.  

3) Severity of the condition

EASA flight test pilots re-evaluated the effect of multiple Pitot probe blockages in an 
Airbus simulator. The previous “major” assessment was confirmed

5.3.2 Rulemaking actions from EASA to improve aviation safety:

 � Decision N°2009/014/R dated 14 October 2009 updating the European technical 
specification ETSO C16 for Pitot and Pitot-static tubes. The revision upgrades the 
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SAE standard with an enhanced test protocol. The Agency is participating in the 
EUROCAE WG-89 which is working on the preparation of a new ETSO standard for 
Pitot probes ETSO (in order to amend C16a).

 � Rulemaking task 25.058 “Large Aeroplane Certification Specifications in Super-
cooled Large Drop, Mixed phase, and Ice Crystal Icing Conditions” was launched 
in 2010. The corresponding NPA 2011-03 was published on 21 March 2011 
and proposed new certification standards for flight in icing conditions. Flight 
instrument external probes, including Pitot probes, are required to be designed 
and installed to operate normally in the new icing environment that includes ice 
crystal and mixed phase icing conditions. As this rulemaking action is ongoing, 
the Agency is using a Certification Review Item (CRI) in the meantime; the related 
Special Condition provides for similar specifications as proposed in the NPA 
2011-03 and is applicable to any new type certification application.

 � The Agency is contributing to international research projects aimed at improving 
knowledge of high altitude icing conditions, in particular in profound convection 
areas, with the presence of high concentrations of ice crystals. This will be 
used to further improve the certification specifications in the future. A project 
was launched by the Agency in 2011; it is referenced as EASA.2011.OP.28 “High 
IWC-Ice water content of clouds at high altitude”. This project will provide 
recommendations on the areas to be studied and on the preparation of flight 
tests to characterise the composition of cloud masses at high altitude.

5.4 Aviation industry actions 

Manufacturers, operators, pilots associations and authorities formed a working group 
to draft an “Aeroplane upset recovery training aid” guide, to optimise both academic 
and practical training on upset recovery issues.

Among the participants in this project were manufacturers: Airbus, Boeing, 
Bombardier; airlines: American Airlines, Continental, British Airways, Lufthansa, 
Qantas, Cathay Pacific, Japan Airlines; and safety authorities: FAA (USA), NTSB (USA), 
CAA (UK).  This manual is regularly reviewed and was updated in 2008.

FAA Advisory Circular (AC120-STALL)

An Advisory Circular (AC) contains information that the FAA considers of major 
interest to operators. An AC is not a binding regulatory text.

The AC is a good practice guide that gives provides crews with the appropriate tools 
to respond to stall issues.

The themes include methods and tools to prevent, recognise and recover from a stall. 
The proposals are for:

 � Advanced theoretical training;
 � Realistic exercises on the simulator based on specific scenarios;
 � Taking into account disengagement of automatic systems;
 � Continuous training at each career stage (initial hiring, new type rating, upgrade 

to Captain, annual recurrent training);
 � Reinforcement of application of SOP’s and effective CRM by the crew;
 � Practice in the “startle factor”;
 � Use of the “upset recovery training aid” by training centres and operators.
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