INSTRUMENT PROCEDURES HANDBOOK
 

NONRADAR ENVIRONMENT

In the absence of radar vectors, an instrument approach begins at an IAF. An aircraft that has been cleared to a holding fix that, prior to reaching that fix, is issued a clearance for an approach, but not issued a revised routing, such as, “proceed direct to…” is expected to proceed via the last assigned route, a feeder route if one is published on the approach chart, and then to commence the approach as published. If, by following the route of flight to the holding fix, the aircraft would overfly an IAF or the fix associated with the beginning of a feeder route to be used, the aircraft is expected to commence the approach using the published feeder route to the IAF or from the IAF as appropriate. The aircraft would not be expected to overfly and return to the IAF or feeder route.

For aircraft operating on unpublished routes, an altitude is assigned to maintain until the aircraft is established on a segment of a published route or IAP. (Example: “maintain 2,000 until established on the final approach course outbound, cleared VOR/DME runway 12.”) The International Civil Aviation Organization (ICAO) definition of established on course requires the aircraft to be within half scale deflection for the ILS and VOR, or within ±5° of the required bearing for the NDB. Generally, the controller assigns an altitude compatible with glide slope intercept prior to being cleared for the approach.

TYPES OF APPROACHES

In the NAS, there are approximately 1,033 VOR stations, 1,200 NDB stations, and 1,370 ILS installations, including 25 LOC-Type Directional Aids (LDAs), 23 Simplified Directional Facilities (SDFs), and 242 LOC only facilities. As time progresses, it is the intent of the FAA to reduce navigational dependence on VOR, NDB, and other ground-based NAVAIDs and, instead, to increase the use of satellite-based navigation.

To expedite the use of RNAV procedures for all instrument pilots, the FAA has begun an aggressive schedule to develop RNAV procedures. During 2002, the number of RNAV/GPS approaches published in the NAS exceeded 3,300, with additional procedures published every revision cycle. While it had originally been the plan of the FAA to begin decommissioning VORs, NDBs, and other ground-based NAVAIDs, the overall strategy has been changed to incorporate a majority dependence on augmented satellite navigation while maintaining a satisfactory backup system. This backup system will include retaining all CAT II and III ILS facilities and close to one-half of the existing VOR network.

Each approach is provided obstacle clearance based on the Order 8260.3 TERPS design criteria as appropriate for the surrounding terrain, obstacles, and NAVAID availability. Final approach obstacle clearance is different for every type of approach but is guaranteed from the start of the final approach segment to the runway (not below the MDA for nonprecision approaches) or MAP, whichever occurs last within the final approach area. Both pilots and ATC assume obstacle clearance responsibility, but it is dependent upon the pilot to maintain an appropriate flight path within the boundaries of the final approach area.

There are numerous types of instrument approaches available for use in the NAS including RNAV (GPS), ILS, MLS, LOC, VOR, NDB, SDF, and radar approaches. Each approach has separate and individual design criteria, equipment requirements, and system capabilities.

VISUAL AND CONTACT APPROACHES

To expedite traffic, ATC may clear pilots for a visual approach in lieu of the published approach procedure if flight conditions permit. Requesting a contact approach may be advantageous since it requires less time than the published IAP and provides separation from IFR and special visual flight rules (SVFR) traffic. A contact or visual approach may be used in lieu of conducting a SIAP, and both allow the flight to continue as an IFR flight to landing while increasing the efficiency of the arrival.

VISUAL APPROACHES

When it is operationally beneficial,ATC may authorize pilots to conduct a visual approach to the airport in lieu of the published IAP. A pilot or the controller can initiate a visual approach. Before issuing a visual approach clearance, the controller must verify that pilots have the airport, or a preceding aircraft that they are to follow, in sight. In the event pilots have the airport in sight but do not see the aircraft they are to follow, ATC may issue the visual approach clearance but will maintain responsibility for aircraft and wake turbulence separation. Once pilots report the aircraft in sight, they assume the responsibilities for their own separation and wake turbulence avoidance.

A visual approach is an ATC authorization for an aircraft on an IFR flight plan to proceed visually to the airport of intended landing; it is not an IAP. Also, there is no missed approach segment. An aircraft unable to complete a visual approach must be handled as any other go-around and appropriate separation must be provided. A vector for a visual approach may be initiated by ATC if the reported ceiling at the airport of intended landing is at least 500 feet above the MVA/MIA and the visibility is 3 SM or greater. At airports without weather reporting service there must be reasonable assurance (e.g. area weather reports, PIREPs, etc.) that descent and approach to the airport can be made visually, and the pilot must be informed that weather information is not available.

The visual approach clearance is issued to expedite the flow of traffic to an airport. It is authorized when the ceiling is reported or expected to be at least 1,000 feet AGL and the visibility is at least 3 SM. Pilots must remain clear of the clouds at all times while conducting a visual approach. At an airport with a control tower, pilots may be cleared to fly a visual approach to one runway while others are conducting VFR or IFR approaches to another parallel, intersecting, or converging runway. Also, when radar service is provided, it is automatically terminated when the controller advises pilots to change to the tower or advisory frequency.

 
 
HOME  |   LATEST NEWS  |     |   -  |   BOOKS YOU CAN READ ONLINE  |   EDITORIALS  |   AVIATION HISTORY