Surveillance systems are set up to enable the ATC system to know the location of an aircraft and where it is heading. Position information from the surveillance system supports many different ATC functions. Aircraft positions are displayed for controllers as they watch over the traffic to ensure that aircraft do not violate separation criteria. In the current NAS, surveillance is achieved through the use of long-range and terminal radars. Scanning the skies, these radars return azimuth and slant range for each aircraft that, when combined with the altitude of the aircraft broadcast to the ground via a transceiver, is transformed mathematically into a position. The system maintains a list of these positions for each aircraft over time, and this time history is used to establish short-term intent and short-term conflict detection. Radars are expensive to maintain, and position information interpolated from radars is not as good as what the aircraft can obtain with SATNAV. ADS-B technology may provide the way to reduce the costs of surveillance for air traffic management purposes and to get the better position information to the ground.

New aircraft systems dependent on ADS-B could be used to enhance the capacity and throughput of the nationís airports. Electronic flight following is one example: An aircraft equipped with ADS-B could be instructed to follow another aircraft in the landing pattern, and the pilot could use the on-board displays or computer applications to do exactly that. This means that visual rules for landing at airports might be used in periods where today the airport must shift to instrument rules due to diminishing visibility. Visual capacities at airports are usually higher than instrument ones, and if the airport can operate longer under visual rules (and separation distances), then the capacity of the airport is maintained at a higher level longer. The CAASD is working with the Cargo Airline Association and the FAA to investigate these and other applications of the ADS-B technology.