Airports are one of the main bottlenecks in the NAS, responsible for one third of the flight delays. It is widely accepted that the unconstrained increase in the number of airports or runways may not wholly alleviate the congestion problem and, in fact, may create more problems than it solves. The aim of the FAA is to integrate appropriate technologies, in support of the OEP vision, with the aim of increasing airport throughput. The airport is a complex system of systems and any approach to increasing capacity must take this into account. Numerous recent developments contribute to the overall solution, but their integration into a system that focuses on maintaining or increasing safety while increasing capacity remains a major challenge. The supporting technologies include new capabilities for the aircraft and ATC, as well as new strategies for improving communication between pilots and ATC.


During peak traffic, ATC uses IFR slots to promote a smooth flow of traffic. This practice began during the late 1960s, when five of the major airports (LaGuardia Airport, Ronald Reagan National Airport, John F. Kennedy International Airport, Newark International Airport, and Chicago O’Hare International Airport) were on the verge of saturation due to substantial flight delays and airport congestion. To combat this, the FAA in 1968 proposed special air traffic rules to these five high-density airports (the “high density rule”) that restricted the number of IFR takeoffs and landings at each airport during certain hours of the day and provided for the allocation of “slots” to carriers for each IFR landing or takeoff during a specific 30 or 60-minute period. A more recent FAA proposal offers an overhaul of the slot-reservation process for JFK, LaGuardia, and Reagan National Airport that includes a move to a 72- hour reservation window and an online slot-reservation system.

The high density rule has been the focus of much examination over the last decade since under the restrictions, new entrants attempting to gain access to high density airports face difficulties entering the market. Because slots are necessary at high density airports, the modification or elimination of the high density rule could subsequently have an effect on the value of slots. Scarce slots hold a greater economic value than slots that are easier to come by.

The current slot restrictions imposed by the high density rule has kept flight operations well below capacity, especially with the improvements in air traffic control technology. However, easing the restrictions imposed by the high density rule is likely to affect airport operations. Travel delay time might be affected not only at the airport that has had the high density restrictions lifted, but also at surrounding airports that share the same airspace. On the other hand, easing the restrictions on slots at high density airports should help facilitate international air travel and help increase the number of passengers that travel internationally.

Slot controls have become a way of limiting noise, since it caps the number of takeoffs and landings at an airport. Easing the restrictions on slots could be politically difficult since local delegations at the affected airports might not support such a move. Ways other than imposing restrictions on slots exist that could diminish the environmental impacts at airports and their surrounding areas. Safeguards, such as requiring the quietest technology available of aircraft using slots and frequent consultations with local residents, have been provided to ensure that the environmental concerns are addressed and solved.


Bad weather often forces the reconfiguration of runways at an airport or mandates the use of IFR arrival and departure procedures, reducing the number of flights per hour that are able to takeoff or land at the affected airport. To accommodate the degraded arrival capacity at the affected airport, the ATCSCC imposes a ground delay program (GDP), which allocates a reduced number of arrival slots to airlines at airports during time periods when demand exceeds capacity. The GDP suite of tools is used to keep congestion at an arrival airport at acceptable levels by issuing ground delays to aircraft before departure, as ground delays are less expensive and safer than in-flight holding delays. The FAA started GDP prototype operations in January 1998 at two airports and expanded the program to all commercial airports in the U.S. within nine months.

Ground Delay Program Enhancements (GDPE) significantly reduced delays due to compression—a process that is run periodically throughout the duration of a GDP. It reduces overall delays by identifying open arrival slots due to flight cancellations or delays and fills in the vacant slots by moving up operating flights that can use those slots. During the first two years of this program, almost 90,000 hours of scheduled delays were avoided due to compression, resulting in cost savings to the airline industry of more than $150 million. GDPE also has improved the flow of air traffic into airports; improved compliance to controlled times of departure; improved data quality and predictability; resulted in equity in delays across carriers; and often avoided the necessity to implement FAA ground delay programs, which can be disruptive to air carrier operations.