INSTRUMENT PROCEDURES HANDBOOK
 

MINIMUM EN ROUTE ALTITUDE

The minimum enroute altitude (MEA) is the lowest published altitude between radio fixes that assures acceptable navigational signal coverage and meets obstacle clearance requirements between those fixes. The MEA prescribed for a Federal airway or segment, RNAV low or high route, or other direct route applies to the entire width of the airway, segment, or route between the radio fixes defining the airway, segment, or route. MEAs for routes wholly contained within controlled airspace normally provide a buffer above the floor of controlled airspace consisting of at least 300 feet within transition areas and 500 feet within control areas. MEAs are established based upon obstacle clearance over terrain and manmade objects, adequacy of navigation facility performance, and communications requirements, although adequate communication at the MEA is not guaranteed.

MINIMUM OBSTRUCTION CLEARANCE ALTITUDE

The minimum obstruction clearance altitude (MOCA) is the lowest published altitude in effect between fixes on VOR airways, off-airway routes, or route segments that meets obstacle clearance requirements for the entire route segment. This altitude also assures acceptable navigational signal coverage only within 22 NM of a VOR. The MOCA seen on the NACO en route chart, may have been computed by adding the required obstacle clearance (ROC) to the controlling obstacle in the primary area or computed by using a TERPS chart if the controlling obstacle is located in the secondary area. This figure is then rounded to the nearest 100 - foot increment, i.e., 2,049 feet becomes 2,000, and 2,050 feet becomes 2,100 feet. An extra 1,000 feet is added in mountainous areas, in most cases. The MOCA is based upon obstacle clearance over the terrain or over manmade objects, adequacy of navigation facility performance, and communications requirements.

ATC controllers have an important role in helping pilots remain clear of obstructions. Controllers are instructed to issue a safety alert if the aircraft is in a position that, in their judgment, places the pilot in unsafe proximity to terrain, obstructions, or other aircraft. Once pilots inform ATC of action being taken to resolve the situation, the controller may discontinue the issuance of further alerts. A typical terrain/obstruction alert may sound like this: “Low altitude alert. Check your altitude immediately. The MOCA in your area is 12,000.”

MINIMUM VECTORING ALTITUDES

Minimum vectoring altitudes (MVAs) are established for use by ATC when radar ATC is exercised. The MVA provides 1,000 feet of clearance above the highest obstacle in nonmountainous areas and 2,000 feet above the highest obstacle in designated mountainous areas. Because of the ability to isolate specific obstacles, some MVAs may be lower than MEAs, MOCAs, or other minimum altitudes depicted on charts for a given location. While being radar vectored, IFR altitude assignments by ATC are normally at or above the MVA.

Controllers use MVAs only when they are assured an adequate radar return is being received from the aircraft. Charts depicting minimum vectoring altitudes are normally available to controllers but not available to pilots. Situational awareness is always important, especially when being radar vectored during a climb into an area with progressively higher MVA sectors, similar to the concept of minimum crossing altitude. Except where diverse vector areas have been established, when climbing, pilots should not be vectored into a sector with a higher MVA unless at or above the next sector’s MVA. Where lower MVAs are required in designated mountainous areas to achieve compatibility with terminal routes or to permit vectoring to an instrument approach procedure, 1,000 feet of obstacle clearance may be authorized with the use of Airport Surveillance Radar (ASR). The MVA will provide at least 300 feet above the floor of controlled airspace. The MVA charts are developed to the maximum radar range. Sectors provide separation from terrain and obstructions. Each MVA chart has sectors large enough to accommodate vectoring of aircraft within the sector at the MVA. [Figure 3-17]


MINIMUM RECEPTION ALTITUDE

Minimum reception altitudes (MRAs) are determined by FAA flight inspection traversing an entire route of flight to establish the minimum altitude the navigation signal can be received for the route and for off-course NAVAID facilities that determine a fix. When the MRA at the fix is higher than the MEA, an MRA is established for the fix, and is the lowest altitude at which an intersection can be determined.

MINIMUM CROSSING ALTITUDE

A minimum crossing altitude (MCA) is the lowest altitude at certain fixes at which the aircraft must cross when proceeding in the direction of a higher minimum en route IFR altitude, as depicted in Figure 3-18 on page 3-14. MCAs are established in all cases where obstacles intervene to prevent pilots from maintaining obstacle clearance during a normal climb to a higher MEA after passing a point beyond which the higher MEA applies. The same protected en route area vertical obstacle clearance requirements for the primary and secondary areas are considered in the determination of the MCA. The standard for determining the MCA is based upon the following climb gradients, and is computed from the flight altitude:

  • Sea level through 5,000 feet MSL—150 feet per NM
  • 5000 feet through 10,000 feet MSL — 120 feet per NM
  • 10,000 feet MSL and over — 100 feet per NM

To determine the MCA seen on a NACO en route chart, the distance from the obstacle to the fix is computed from the point where the centerline of the en route course in the direction of flight intersects the farthest displacement from the fix, as shown in Figure 3-19. When a change of altitude is involved with a course change, course guidance must be provided if the change of altitude is more than 1,500 feet and/or if the course change is more than 45 degrees, although there is an exception to this rule. In some cases, course changes of up to 90 degrees may be approved without course guidance provided that no obstacles penetrate the established MEA requirement of the previous airway or route segment. Outside U. S. airspace, pilots may encounter different flight procedures regarding MCA and transitioning from one MEA to a higher MEA. In this case, pilots are expected to be at the higher MEA crossing the fix, similar to an MCA. Pilots must thoroughly review flight procedure differences when flying outside U.S. airspace. On NACO en route charts, routes and associated data outside the conterminous U.S. are shown for transitional purposes only and are not part of the high altitude jet route and RNAV route systems. [Figure 3-20]

 
HOME  |   LATEST NEWS  |     |   -  |   BOOKS YOU CAN READ ONLINE  |   EDITORIALS  |   AVIATION HISTORY
 
`