Procedures are established for the control of IFR high performance airplane arrivals, and are generally applied regardless of air traffic activity or time of day. This includes all turbojets and turboprops over 12,500 pounds. These procedures reduce fuel consumption and minimize the time spent at low altitudes. The primary objective is to ensure turbine-powered airplanes remain at the highest possible altitude as long as possible within reasonable operating limits and consistent with noise abatement policies.


During the arrival, expect to make adjustments in speed at the controller’s request. When you fly a high-performance airplane on an IFR flight plan, ATC may ask you to adjust your airspeed to achieve proper traffic sequencing and separation. This also reduces the amount of radar vectoring required in the terminal area. When operating a reciprocating engine or turboprop airplane within 20 NM from your destination airport, 150 knots is usually the slowest airspeed you will be assigned. If your aircraft cannot maintain the assigned airspeed, you must advise ATC. Controllers may ask you to maintain the same speed as the aircraft ahead of or behind you on the approach. You are expected to maintain the specified airspeed ±10 knots. At other times, ATC may ask you to increase or decrease your speed by 10 knots, or multiples thereof. When the speed adjustment is no longer needed, ATC will advise you to “…resume normal speed.” Keep in mind that the maximum speeds specified in Title 14 of the Code of Federal Regulations (14 CFR) Part 91.117 still apply during speed adjustments. It is your responsibility, as pilot in command, to advise ATC if an assigned speed adjustment would cause you to exceed these limits. For operations in Class C or D airspace at or below 2,500 feet above ground level (AGL), within 4 NM of the primary airport,ATC has the authority to request or approve a faster speed than those prescribed in Part 91.117.

Pilots operating at or above 10,000 feet MSL on an assigned speed adjustment that is greater than 250 KIAS are expected to reduce speed to 250 KIAS to comply with Part 91.117(a) when cleared below 10,000 feet MSL, within domestic airspace. This speed adjustment is made without notifying ATC. Pilots are expected to comply with the other provisions of Part 91.117 without notifying ATC. For example, it is normal for faster aircraft to level off at 10,000 feet MSL while slowing to the 250 KIAS limit that applies below that altitude, and to level off at 2,500 feet above airport elevation to slow to the 200 KIAS limit that applies within the surface limits of Class C or D airspace. Controllers anticipate this action and plan accordingly.

Speed restrictions of 250 knots do not apply to aircraft operating beyond 12 NM from the coastline within the United States (U.S.) Flight Information Region, in offshore Class E airspace below 10,000 feet MSL. In airspace underlying a Class B airspace area designated for an airport, pilots are expected to comply with the 200 KIAS limit specified in Part 91.117(c). (See Parts 91.117(c) and 91.703.)

Approach clearances cancel any previously assigned speed adjustment. Pilots are expected to make speed adjustments to complete the approach unless the adjustments are restated. Pilots complying with speed adjustment instructions should maintain a speed within plus or minus 10 knots or 0.02 Mach number of the specified speed.

Although standardization of these procedures for terminal locations is subject to local considerations, specific criteria apply in developing new or revised arrival procedures. Normally, high performance airplanes enter the terminal area at or above 10,000 feet above the airport elevation and begin their descent 30 to 40 NM from touchdown on the landing runway. Unless pilots indicate an operational need for a lower altitude, descent below 5,000 feet above the airport elevation is typically limited to the descent area where final descent and glide slope intercept can be made without exceeding specific obstacle clearance and other related arrival, approach, and landing criteria. Your descent should not be interrupted by controllers just to ensure that you cross the boundaries of the descent area at precisely 5,000 feet above the airport elevation. A typical descent area is shown in Figure 4-11 on page 4-12.

Arrival delays typically are absorbed at a metering fix. This fix is established on a route prior to the terminal airspace, 10,000 feet or more above the airport elevation. The metering fix facilitates profile descents, rather than controllers using delaying vectors or a holding pattern at low altitudes. Descent restrictions normally are applied prior to reaching the final approach phase to preclude relatively high descent rates close in to the destination airport. At least 10 NM from initial descent from 10,000 feet above the airport elevation, the controller issues an advisory that details when to expect to commence the descent. ATC typically uses the phraseology, “Expect descent in (number) miles.” If cleared for a visual or contact approach, ATC usually restricts you to at least 5,000 feet above the airport elevation until entering the descent area. Standard ATC phraseology is, “Maintain (altitude) until (specified point; e.g., abeam landing runway end), cleared for visual approach or expect visual or contact approach clearance in (number of miles, minutes or specified point).”

Once the determination is made regarding the instrument approach and landing runway you will use, with its associated descent area,ATC will not permit a change to another navigational aid that is not aligned with the landing runway. When altitude restrictions are required for separation purposes, ATC avoids assigning an altitude below 5,000 above the airport elevation.

There are numerous exceptions to the high performance airplane arrival procedures previously outlined. For example, in a nonradar environment, the controller may clear the flight to use an approach based on a NAVAID other than the one aligned with the landing runway, such as a circling approach. In this case, the descent to a lower altitude usually is limited to the descent area with the circle-to-land maneuver confined to the traffic pattern. Also in a nonradar environment, contact approaches may be approved from 5,000 above the airport elevation while the flight is within a descent area, regardless of landing direction.

Descent areas are established for all straight-in instrument approach procedures at an airport and may be established for runways not served by an instrument approach procedure to accommodate visual and contact approaches. More than one runway (descent area) may be used simultaneously for arriving high performance airplanes if there is an operational advantage for the pilot or ATC, provided that the descent area serves the runway of intended landing.