INSTRUMENT PROCEDURES HANDBOOK
 

DESCENT RATES AND GLIDEPATHS FOR NONPRECISION APPROACHES

Maximum Acceptable Descent Rates: Operational experience and research have shown that a descent rate of greater than approximately 1,000 FPM is unacceptable during the final stages of an approach (below 1,000 feet AGL). This is due to a human perceptual limitation that is independent of the type of airplane or helicopter. Therefore, the operational practices and techniques must ensure that descent rates greater than 1,000 FPM are not permitted in either the instrument or visual portions of an approach and landing operation.

For short runways, arriving at the MDA at the MAP when the MAP is located at the threshold may require a missed approach for some airplanes. For nonprecision approaches a descent rate should be used that will ensure that the airplane reaches the MDA at a distance from the threshold that will allow landing in the touchdown zone. On many IAPs this distance will be annotated by a VDP. To determine the required rate of descent, subtract the TDZE from the FAF altitude and divide this by the time inbound. For example if the FAF altitude is 2,000 feet MSL, the TDZE is 400 feet MSL and the time inbound is two minutes, an 800 FPM rate of descent should be used.

To verify the airplane is on an approximate 3° glidepath, use a calculation of “300-foot-to 1 NM.” The glidepath height above TDZE is calculated by multiplying the NM distance from the threshold by 300. For example, at 10 NM the aircraft should be 3,000 feet above the TDZE, at 5 NM 1,500 feet, at 2 NM 600 feet, at 1.5 NM 450 feet, etc., until a safe landing can be made. In the above example the aircraft should arrive at the MDA (800 feet MSL) approximately 1.3 NM from the threshold and in a position to land in the touchdown zone. Techniques for deriving a “300-to- 1” glidepath include using distance measuring equipment (DME), distance advisories provided by radar-equipped control towers, RNAV (exclusive of Omega navigation systems), GPS, dead reckoning, and pilotage when familiar features on the approach course are visible. The runway threshold should be crossed at a nominal height of 50 feet above the TDZE.

TRANSITION TO VISUAL

The transition from instrument flight to visual flight during an instrument approach can be very challenging, especially during low visibility operations. Additionally, single-pilot operations make the transition even more challenging. Approaches with vertical guidance add to the safety of the transition to visual because the approach is already stabilized upon visually acquiring the required references for the runway. One hundred to 200 feet prior to reaching the DA, DH, or MDA, most of the PM’s attention should be outside of the aircraft in order to visually acquire at least one visual reference for the runway, as required by the regulations. The PF should stay focused on the instruments until the PM calls out any visual aids that can be seen, or states “runway in sight.” The PF should then begin the transition to visual flight. It is common practice for the PM to call out the V/S during the transition to confirm to the PF that the instruments are being monitored, thus allowing more of the PF’s attention to be focused on the visual portion of the approach and landing. Any deviations from the stabilized approach criteria should also be announced by the PM.

Single-pilot operations can be much more challenging because the pilot must continue to fly by the instruments while attempting to acquire a visual reference for the runway. While it is important for both pilots of a two-pilot aircraft to divide their attention between the instruments and visual references, it is even more critical for the single-pilot operation. The flight visibility must also be at least the visibility minimum stated on the instrument approach chart, or as required by regulations. CAT II and III approaches have specific requirements that may differ from CAT I precision or nonprecision approach requirements regarding transition to visual and landing. This information can be found in the operator’s OpsSpecs or Flight Operations Manual.

The visibility published on an approach chart is dependent on many variables, including the height above touchdown for straight-in approaches, or height above airport elevation for circling approaches. Other factors include the approach light system coverage, and type of approach procedure, such as precision, nonprecision, circling or straight-in. Another factor determining the minimum visibility is the penetration of the 34:1 and 20:1 surfaces. These surfaces are inclined planes that begin 200 feet out from the runway and extend outward to 10,000 feet. If there is a penetration of the 34:1 surface, the published visibility can be no lower than 3/4 SM. If there is penetration of the 20:1 surface, the published visibility can be no lower than 1 SM with a note prohibiting approaches to the affected runway at night (both straight-in and circling). [Figure 5-21] Circling may be permitted at night if penetrating obstacles are marked and lighted. If the penetrating obstacles are not marked and lighted, a note is published that night circling is “Not Authorized.” Pilots should be aware of these penetrating obstacles when entering the visual and/or circling segments of an approach and take adequate precautions to avoid them.

For RNAV approaches only, the presence of a grey shaded line from the MDA to the runway symbol in the profile view, is an indication that the visual segment below the MDA is clear of obstructions on the 34:1 slope. Absence of the gray shaded area indicates the 34:1 OCS is not free of obstructions.

 

 
 
HOME  |   LATEST NEWS  |     |   -  |   BOOKS YOU CAN READ ONLINE  |   EDITORIALS  |   AVIATION HISTORY